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In two replication studies we examined response bias and dependencies in voluntary deci-
sions. We trained a linear classifier to predict “spontaneous decisions” and in the second
study “hidden intentions” from responses in preceding trials and achieved comparable pre-
diction accuracies as reported for multivariate pattern classification based on voxel activities
in frontopolar cortex. We discuss implications of our findings and suggest ways to improve
classification analyses of fMRI BOLD signals that may help to reduce effects of response
dependencies between trials.
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The prospect of decoding brain activity to predict spontaneous
or free decisions captivates not only the neuroscientific commu-
nity (Haggard, 2008) but increasingly inspires researchers in other
disciplines (Mobbs et al., 2007; Heisenberg, 2009).

The purpose of this paper is to draw attention to possible
confounds and improved data analyses when decoding neural cor-
relates to predict behavior. We focus on a specific task and set
of results but we believe that the problem of sequential depen-
dencies is pervasive and needs to be considered carefully when
applying machine learning algorithms to predict behavior from
brain imaging data.

In two replication studies we illustrate how individual response
bias and response dependencies between trials may affect the
prediction accuracy of classification analyses. Although our behav-
ioral results are not sufficient to dismiss the original findings based
on fMRI BOLD signals they highlight potential shortcomings and
suggest alternative ways to analyze the data.

In recent studies Soon et al. (2008) and Bode et al. (2011)
used a self-paced free or voluntary decision task to study uncon-
scious determinants preceding “spontaneous” motor decisions. In
both studies subjects spontaneously pressed a left or right response
button with their corresponding index finger in a series of trials.
Brain activity was measured by fMRI BOLD signals and the pat-
tern of voxel activity before (and after) the decision was used to
predict binary motor responses. Soon et al. (2008) applied a linear
multivariate pattern classifier and searchlight technique to local-
ize patterns of predictive voxel activities (Haxby et al., 2001) and
achieved 60% prediction accuracy in a localized region of fron-
topolar cortex (FPC). Bode et al. (2011), using a high-resolution
scan of the prefrontal cortex, reported 57% prediction accuracy
for the same task. The authors conclude that patterns of voxel
activities in FPC constitute the neural correlate of unconscious
determinants preceding spontaneous decisions.

In both studies the activation patterns in FPC occurred up to
10–12 s before participants reported their conscious decisions. If
validated this finding would dramatically extend the timeline of
pre-SMA/SMA (Lau et al., 2004; Leuthold et al., 2004) as well
as results on readiness potentials for voluntary acts (Libet et al.,
1983; see however Trevena and Miller, 2010) with far-reaching
implications (Mobbs et al., 2007; Heisenberg, 2009).

Soon et al. (2008) and Bode et al. (2011) made considerable
attempts to control carry-over effects from one trial to the next and
selected a subset of trials with balanced left and right responses
to eliminate response bias. We argue that despite these precau-
tions response dependencies in combination with response bias in
the raw data may have introduced spurious correlations between
patterns of voxel activities and decisions.

Naïve participants have difficulties to generate random
sequences and sequential dependencies across trials are com-
monly observed in binary decisions (Lages and Treisman, 1998;
Lages, 1999, 2002) as well as random response tasks (Bakan,
1960; Treisman and Faulkner, 1987). In some tasks, these depen-
dencies are not just simple carry-over effects from one trial to
the next but reflect stimulus and response dependencies (Lages
and Treisman, 1998) as well as contextual information process-
ing (Lages and Treisman, 2010; Treisman and Lages, 2010), often
straddling across several trials and long inter-trial-intervals (Lages
and Paul, 2006). These dependencies may indicate involvement
of memory and possibly executive control (Luce, 1986), espe-
cially in self-ordered tasks where generation of a response requires
monitoring previously executed responses (Christoff and Gabrieli,
2000).

In order to address the issue of sequential dependencies in
connection with response bias we conducted two behavioral
replication studies and performed several analyses on individual
behavioral data, the results of which are summarized below.
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STUDY 1: SPONTANEOUS MOTOR DECISIONS
In this replication study we investigated response bias and response
dependency of binary decisions in a spontaneous motor task. We
closely replicated the study by Soon et al. (2008) in terms of stimuli,
task, and instructions (Soon et al., 2008) but without monitoring
fMRI brain activity since we are mainly interested in behavioral
characteristics.

METHODS
Subjects were instructed to relax while fixating on the center of a
screen where a stream of random letters was presented in 500 ms
intervals. At some point, when participants felt the urge to do so,
they immediately pressed one of two buttons with their left or right
index finger. Simultaneously, they were asked to remember the let-
ter that appeared on the screen at the time when they believed their
decision to press the button was made. Shortly afterward, the let-
ters from three preceding trials and an asterisk were presented on
screen randomly arranged in a two-by-two matrix. The partici-
pants were asked to select the remembered letter in order to report
the approximate time point when their decision was formed. If
the participant chose the asterisk it indicated that the remem-
bered letter was not among the three preceding intervals and the
voluntary decision occurred more than 1.5 s ago. Subjects were
asked to avoid any form of preplanning for choice of movement
or time of execution.

PARTICIPANTS
All participants (N = 20, age 17–25, 14 female) were students at
Glasgow University. They were naïve as to the aim of the study,
right-handed, and with normal or corrected-to-normal visual acu-
ity. The study was conducted according to the Declaration of
Helsinki ethics guidelines. Informed written consent was obtained
from each participant before the study.

RESULTS
Following Soon et al. (2008) we computed for each participant the
frequency of a left or right response. If we assume that the spon-
taneous decision task produces independent responses then the
process can be modeled by a binomial distribution where prob-
ability for a left and right response may vary from participant to
participant.

P[t (x) = s|θ] =
(

n
s

)
θs(1 − θ)n−s

The observed data t (x) is simply the sum of s left (right) responses,
n is the total number of responses, and θ is a parameter that reflects
the unknown probability of responding Left (Right) with θ ∈ [0,1].
The hypothesis of a balanced response corresponds to a response
rate of θ = 0.5. Rather than trying to affirm this null hypothesis
we can test whether the observed number of left (right) responses
deviates significantly from the null hypothesis by computing the
corresponding p-value (two-sided).

p(two - sided) =
n−s∑

xi=0

t (xi) +
n∑

xi=s

t (xi)

We found that response frequencies of 4 out of 20 participants (2
out of 20 if adjusted for multiple tests according to Sidak–Dunn)
significantly deviated from a binomial distribution with equal
probabilities (p < 0.05, two-sided). Soon et al. (2008) excluded
24 out of 36 participants who exceeded a response criterion that is
equivalent to a binomial test with p < 0.11 (two-sided). Bode et al.
(2011) applied a similar response criterion but did not document
selection of participants. They reported exclusion of a single par-
ticipant from their sample of N = 12 due to relatively unbalanced
decisions and long trial durations; responses from the remaining
11 subjects were included in their analyses. In the present study 8
out of 20 participants did not meet Soon et al.’s response criterion
(for details see Table A1 in Appendix).

Selection of participants is a thorny issue. While the intention
may have been to select participants who made truly spontaneous
and therefore independent decisions they selected participants
who generated approximately balanced responses. This assump-
tion is fallible since subjects’ response probabilities are unlikely to
be perfectly balanced and the null hypothesis of θ = 0.5 can be
difficult to affirm.

Excluding 2/3 of the subjects reduces generalizability of results
and imposing the assumption of no response bias on the remaining
subjects seems inappropriate because these participants can still
have true response probabilities θ that are systematically different
from 0.5.

To give an example of how a moderate response bias may
affect prediction accuracy of a trained classifier, consider a par-
ticipant who generates 12 left and 20 right responses in 32 trials.
Although this satisfies the response criterion mentioned above, a
classifier trained on this data is susceptible to response bias. If the
classifier learns to match the individual response bias prediction
accuracy may exceed the chance level of 50%. (If, for example, the
classifier trivially predicts the more frequent response then this
strategy leads to 62.5% rather than 50% correct predictions in our
example.)

To alleviate the problem of response bias Soon et al. (2008)
and Bode et al. (2011) not only selected among participants but
also designated equal numbers of left (L) and right (R) responses
from the experimental trials before entering the data into their
classification analysis. It is unclear how they sampled trials but
even if they selected trials randomly the voxel activities before
each decision are drawn from an experiment with unbalanced L
and R responses. As a consequence the problem does not dis-
sipate with trial selection. After selecting an equal number of L
and R responses from the original data set this subsample still
has an unbalanced number of L and R responses in the preced-
ing trials so that the distribution of all possible pairs of successive
responses in trial t − 1 and trial t (LL, LR, RR, RL) is not uni-
form. Since there are more Right responses in the original data
set we are more likely to sample more RR “stay” trials and less
LR “switch” trials as well as more RL “switch” trials compared to
LL “stay” trials. The exact transition probabilities for these events
depend on the individual response pattern. Switching and staying
between successive responses creates a confounding variable that
may introduce spurious correlations between voxel activities from
previous responses and the predicted responses. This confound
may be picked up when training a linear support vector machine
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(SVM) classifier to predict current responses from voxel activities
in previous trials.

Similar to Soon et al. (2008) and Bode et al. (2011) we first com-
puted the length and frequency of the same consecutive responses
(L and R runs) for each participant and fitted the pooled and aver-
aged data by an exponential function. However, here we fitted the
pooled data with the (single-parameter) exponential probability
distribution function

f (x) = λe−λx , for x ! 0

(see Figure 1A). We found reasonable agreement with the expo-
nential distribution (R = 0.89) as an approximation of the geomet-
ric distribution. The estimated parameter λ = −0.805 is equivalent
to a response rate of θ = 1 − e−λ = 0.553, slightly elevated from
θ = 0.5.

Although the exponential distribution suggests an independent
and memoryless process such a goodness-of-fit does not qualify as
evidence for independence and stationarity in the individual data.
Averaging or pooling of data across blocks and participants can
hide systematic trends and patterns in individual data.

To avoid these sampling issues we applied the Wald–Wolfowitz
or Runs test (MatLab, MathWorks Inc.) to each individual
sequence of 32 responses. This basic non-parametric test is based
on the number of runs above and below the median and does not
rely on the assumption that binary responses have equal proba-
bilities (Kvam and Vidakovic, 2007). Our results indicate that 3
out of the 12 selected participants in our replication study show
statistically significant (p < 0.05) departures from stationarity (2
out of 12 adjusted for multiple tests). Similarly, approximating
the binomial by a normal distribution with unknown parameters
(Lilliefors, 1967), the Lilliefors test detected 4 out of 20 (4 out of
the selected 12) statistically significant departures from normal-
ity in our replication study (3 out of 20 and 1 out of 12 adjusted
for multiple tests). These violations of stationarity and normality

point to response dependencies between trials in at least some of
the participants (for details see Table A1 in Appendix).

CLASSIFICATION ANALYSIS
In analogy to Soon et al. (2008) and Bode et al. (2011) we also per-
formed a multivariate pattern classification. To assess how much
discriminative information is contained in the pattern of previ-
ous responses rather than voxel activities, we included up to two
preceding responses to predict the following response within an
individual data set. Thereto, we entered the largest balanced set
of left/right response trials and the unbalanced responses from
the preceding trials into the analysis and assigned every 9 out of
10 responses to a training data set. This set was used to train
a linear SVM classifier (MatLab, MathWorks Inc.). The classi-
fier estimated a decision boundary separating the two classes
(Jäkel et al., 2007). The learned decision boundary was applied
to classify the remaining sets and to establish a predictive accu-
racy. This was repeated 10 times, each time using a different
sample of learning and test sets, resulting in a 10-fold cross
validation. The whole procedure was bootstrapped a 100 times
to obtain a mean prediction accuracy and a measure of vari-
ability for each individual data set (see Figure 1B; Table A1 in
Appendix).

One participant (Subject 11) had to be excluded from the
classification analysis because responses were too unbalanced to
train the classifier. For most other participants the classifier per-
formed better when it received only one rather than two preced-
ing responses to predict the subsequent response and therefore
we report only classification results based on a single preceding
response.

If we select N = 12 participants according to the response cri-
terion employed by Soon et al. (2008) prediction accuracy for a
response based on its preceding response reaches 61.6% which
is significantly higher than 50% (t (11) = 2.6, CI = [0.52–0.72],
p = 0.013). If we include all participants except Subject 11 then

FIGURE 1 | Study 1 (N = 12): Left/Right motor decision task. (A)
Histogram for proportion of length of response runs pooled across
participants. Superimposed in Red is the best fitting exponential distribution

function. (B) Prediction accuracies of linear SVM trained on preceding and
current responses for individual data sets (black circles, error bars = ± 1 SD
bootstrapped) and group average (red circle, error bar = ± 1 SD).
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average prediction accuracy based on the preceding response was
reduced to 55.4%(t (18) = 1.3, CI = [0.47–0.64], p = 0.105).

Our classification analysis illustrates that a machine learning
algorithm (linear SVM) can perform better than chance when
predicting a response from its preceding response. The algorithm
simply learns to discriminate between switch and stay trials. In our
replication study this leads to prediction accuracies that match the
performance of a multivariate pattern classifier based on voxel
activities in FPC (Soon et al., 2008; Bode et al., 2011).

DISCUSSION
Although our behavioral results show that response bias and
response dependency in individual data give rise to the same pre-
diction accuracy as a multivariate pattern classifier based on voxel
activities derived from fMRI measurements, our behavioral results
are not sufficient to dismiss the original findings.

In particular, the temporal emergence of prediction accuracy
in voxel patterns as observed in Soon et al. (2008) and Bode et al.
(2011) seems to contradict the occurrence of sequential or carry-
over effects from one trial to the next because prediction accuracy
from voxel activity in FPC starts at zero, increases within a time
window of up to 10–12 s before the decision and returns to zero
shortly after the decision.

It should be noted however that their results are based on non-
significant changes of voxel activity in FPC averaged across trials
and participants. We do not know how reliably the predictive pat-
tern emerged in each of the participants and across trials. It is
also noteworthy that the hemodynamic response function (HRF)
in FPC, modeled by finite impulse response (FIR), peaked 3–7 s
after the decision was made. Although the voxel activity above
threshold did not discriminate between left and right responses,
this activity in FPC must serve a purpose that is different from
generating spontaneous decisions.

The FIR model for BOLD signals makes no assumption about
the shape of the HRF. Soon et al. estimated 13 parameters at 2 s
intervals and Bode et al. (2011) used 20 parameters at 1.5 s inter-
vals for each of the approximately 5 by 5 by 5 = 125 voxels in a
spherical cluster. The cluster moved around according to a mod-
ified searchlight technique to identify the most predictive region.
Although a linear SVM with a fixed regularizer does not invite
overfitting the unconstrained FIR model can assume unreason-
able HRF shapes for individual voxels. If these voxels picked up
residual activity related to the preceding trial, especially in trials
where the ITI was sufficiently short, then this procedure carries the
risk of overfitting. Activity in the left and right motor cortex, for
example, showed prediction accuracies of up to 75% 4–6 s after a
decision was reported (Soon et al., 2008).

It may be argued that at least some predictive accuracy should
be maintained throughout ITIs if carry-over effects were present
between trials. However, voxel activities were sampled at differ-
ent ITIs due to the self-paced response task. It seems reason-
able to assume that ITIs between “spontaneous” decisions are
not uniformly distributed. Indeed the individual response times
in our replication study were skewed toward shorter intervals,
approximating a Poisson distribution that is typical for behavioral
response times (Luce, 1986). When voxel activation is temporally
aligned with a decision then this effectively creates a time window

in which on average residual activation from a previous response
is more likely to occur. As a consequence, and despite relatively
long average trial durations, the FIR model parameters may pick
up residual activation from the previous trial in a critical time
window before the next decision (Rolls and Deco, 2011).

Although we would like to avoid a discussion of the difficult
philosophical issues of “free will” and “consciousness,” the present
task implies that participants monitor the timing of their own con-
scious decisions while generating “spontaneous” responses. The
instruction to perform “spontaneous” decisions may be seen as
a contradiction in terms because the executive goal that controls
behavior in this task is to generate decisions without executive
control (Jahanshahi et al., 2000; Frith, 2007). Participants may
have simplified this task by maintaining (fluctuating) intentions to
press the left or right button and by reporting a decision when
they actually decided to press the button (Brass and Haggard,
2008; Krieghoff et al., 2009). This is not quite compatible with
the instructions for the motor task but describes a very plausible
response strategy nevertheless.

STUDY 2: HIDDEN INTENTIONS
Interestingly, in an earlier study with N = 8 participants Haynes
et al. (2007) investigated neural correlates of hidden intentions
and reported an average decoding accuracy of 71% from voxel
activities in anterior medial prefrontal cortex (MPFCa) and 61%
in left lateral frontopolar cortex (LLFPC) before task execution.

We replicated this study in order to test whether response bias
and dependency also match the prediction accuracies for delayed
intentions. 12 participants (age 18–29, nine female) freely chose
between addition and subtraction of two random numbers before
performing the intended mental operation after a variable delay
(see Haynes et al., 2007 for details). Again, we closely replicated
the original study in terms of stimuli, task, and instructions but
without monitoring fMRI BOLD signals.

RESULTS
As in Study 1 we tested for response bias and 4 out of 12
participants significantly deviated from a binomial distribution
with equal probabilities (p < 0.05, two-sided). Since Haynes et al.
(2007) do not report response bias and selection of participants
we included all participants in the subsequent analyses.

The exponential probability distribution with λ = −0.562
(equivalent to a response probability θ = 0.430) fitted the pooled
data of sequence lengths well (R = 0.97; see Figure 2A) but the
Wald–Wolfowitz or Runs test on each individual sequence of 32
responses indicated that 5 out of 12 participants violated stationar-
ity in the delayed addition/subtraction task (one participant when
adjusted for multiple tests). Similarly, a Lilliefors test detected five
significant violations of normality (three adjusted for multiple
tests, see Table A2 in Appendix).

One participant (Subject 6) was excluded because responses
were too unbalanced to train the linear SVM classifier. We then
performed a classification analysis on selected trials with a bal-
anced number of addition/subtraction responses using the pre-
ceding response as the only predictor. Averaged across N = 11
participants the prediction accuracy of the SVM classifier reached
64.1% which is significantly different from 50% (t (10) = 3.39,
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FIGURE 2 | Study 2 (N = 12): addition/subtraction in delayed intention
task. (A) Histogram for proportion of length of response runs pooled across
participants. Superimposed in Red is the best fitting exponential distribution

function. (B) Prediction accuracies of linear SVM trained on preceding and
current responses for individual data sets (black circles, error bars = ± 1 SD
bootstrapped) and group average (red circle, error bar = ± 1 SD).

CI = [0.55–0.73], p = 0.0035). The classification results are sum-
marized in Figure 2B and Table A2 in the Appendix.

DISCUSSION
It has been suggested that the FPC is implicated in tasks requiring
high-level executive control, especially in tasks that involve storing
conscious intentions across a delay (Sakai and Passingham, 2003;
Haynes et al., 2007), processing of internal states (Christoff and
Gabrieli, 2000), modulation of episodic memory retrieval (LePage
et al., 2000; Herron et al., 2004), prospective memory (Burgess
et al., 2001), relational reasoning (Christoff et al., 2001; Kroger
et al., 2002), the integration of cognitive processes (Ramnani and
Owen, 2004), cognitive branching (Koechlin and Hyafil, 2007), as
well as alternative action plans (Boorman et al., 2009). How much a
participant can be consciously aware of these cognitive operations
is open to discussion but they seem to relate to strategic planning
and executive control rather than random generation of responses.

In an attempt to relate activity in the FPC to contextual changes
in a decision task, Boorman et al. (2009) reported a study where
subjects decided freely between a left and right option based
on past outcomes but random reward magnitudes. In this study
participants were informed that the reward magnitudes were ran-
domly determined on each trial, so that it was not possible to track
them across trials; however, participants were also told that reward
probabilities depended on the recent outcome history and could
therefore be tracked across trials, thus creating an effective context
for directly comparing FPC activity on self-initiated (as opposed
to externally cued) switch and stay trials. Increased effect size of
relative unchosen probability/action peaked twice in FPC: shortly
after the decision and a second time as late as 20 s after trial onset.
Boorman et al. (2009) suggest that FPC tracks the relative advan-
tage associated with the alternative course of action over trials and,
as such, may play a role in switching behavior. Interestingly, in their
analyses of BOLD signal changes the stay trials (LL, RR) differed
significantly from the switch trials (LR, RL).

Following neuroscientific evidence (Boorman et al., 2009) and
our behavioral results we recommend that multivariate pattern
classification of voxel activities should be performed not only on
trials with balanced responses but on balanced combinations of
previous and current responses (e.g., LL, LR, RL, and RR trials)
to reduce hidden effects of response dependencies. Similarly, it
should be checked whether the parameters of an unconstrained
FIR model describe a HRF that is anchored on the same baseline
and shows no systematic differences between switch and stay trials.
This will inform whether or not the FIR model parameters pick
up residual activity related to previous responses, especially after
shorter ITIs.

CONCLUSION
Applying machine learning in form of a multivariate pattern analy-
sis (MVPA) of voxel activity in order to localize neural correlates
of behavior brings about a range of issues and challenges that
are beyond the scope of this paper (see for example Hanson and
Halchenko, 2008; Kriegeskorte et al., 2009; Pereira et al., 2009;
Anderson and Oates, 2010; Hanke et al., 2010).

In general, a selective analysis of voxel activity can be a pow-
erful tool and perfectly justified when the results are statistically
independent of the selection criterion under the null hypothesis.
However, when applying machine learning in the form of MVPA
the danger of “double dipping” (Kriegeskorte et al., 2009), that
is the use of the same data for selection and selective analysis,
increases with each stage of data processing (Pereira et al., 2009)
and can result in inflated and invalid statistical inferences.

In a typical behavioral study, for example, it would be seen as
questionable if the experimenter first rejected two-thirds of the
participants according to an arbitrary response criterion, sam-
pled trials to balance the number of responses from each category
in each block, searched among a large number of multivariate
predictors and reported the results of the classification analysis
with the highest prediction accuracy.
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In conclusion, it seems possible that the multivariate pattern
classification in Soon et al. (2008) and Bode et al. (2011) was com-
promised by individual response bias in preceding responses and
picked up neural correlates of the intention to switch or stay dur-
ing a critical time window. The moderate prediction accuracies
for multivariate classification analyses of fMRI BOLD signals and
our behavioral results call for a more cautious interpretation of
findings as well as improved classification analyses.

A fundamental question that may be put forward in the
context of cognitive functioning is whether the highly intercon-
nected FPC generates voluntary decisions independently of con-
textual information, like a homunculus or ghost in the machine.

After all, the frontal cortex as part of the human cognitive sys-
tem is highly integrated and geared toward strategic planning
in a structured environment. In this sense it seems plausible
that neural correlates of “hidden intentions” and “spontaneous
decisions” merely reflect continuous processing of contextual
information.
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APPENDIX

Table A1 | Replication study 1: left/right key press in spontaneous motor decision task.

Subject Resp. bias left/right Bino. test p-value No of Runs Runs test p-value Lilliefors p-value SVM pred acc

[1] 21/11 0.1102 11 0.1194 0.0957 [0.5875]
2 16/16 1.0 17 1.0 0.1659 0.3973
3 13/19 0.3771 16 1.0 0.1116 0.2672
[4] 11/21 0.1102 15 1.0 0.0017** [0.4970]
5 14/18 0.5966 26 0.0009*** 0.4147 0.8218
6 15/17 0.8601 15 0.6009 0.0893 0.5607
[7] 22/10* 0.0501(*) 17 0.4906 >0.5 [0.4259]
8 20/12 0.2153 18 0.5647 >0.5 0.6295
[9] 10/22* 0.0501(*) 15 1.0 0.001*** [0.2845]
10 18/14 0.5966 21 0.1689 0.0936 0.6789
[11] 31/1*** 0.0001*** 3 1.0 >0.5 [NA]
12 19/13 0.3771 20 0.2516 0.4147 0.5790
13 20/12 0.2153 22 0.0280(*) 0.3476 0.7267
14 14/18 0.5966 21 0.1689 0.1659 0.6098
15 16/16 1.0 21 0.2056 0.1116 0.6330
[16] 4/28*** 0.0001*** 5 0.0739 0.0017*** [0.7513]
17 17/15 0.8601 22 0.0989 >0.5 0.7026
[18] 11/21 0.1102 16 0.9809 0.0893 [0.2985]
19 12/20 0.2153 7 0.00092*** 0.001*** 0.7891
[20] 11/21 0.1102 16 0.9809 0.0936 [0.2844]
Tot/Avg 4.25# 4 (2) 16.2 3 (2) 4 (4) 0.5539

Participant excluded according to Soon et al.’s (2008) response criterion (binomial test p < 0.11); #average deviation: Σi |xi–n/2|/N for n = 32 and N = 20.
*p < 0.05, **p < 0.01, ***p < 0.001; ( ·) number of violations adjusted for multiple tests after Sidak–Dunn.

Table A2 | Replication study 2: addition/subtraction in hidden intention task.

Subject Resp. bias add/sub Bino. test p-value No of Runs Runs test p-value Lilliefors p-value SVM pred acc

1 11/21 0.1102 9 0.0184(*) 0.0112(**) 0.7725
2 14/18 0.5966 10 0.0215(*) 0.0271(*) 0.7124
3 11/21 0.1102 8 0.0057(**) 0.1153 0.6991
4 14/18 0.5966 9 0.0071(**) 0.001*** 0.7847
5 21/11 0.1102 12 0.2405 0.001*** 0.5932
6 2/30*** 0.0001*** 5 1.0 >0.5 N/A
7 17/15 0.8601 18 0.8438 0.3267 0.6074
8 20/12 0.2153 12 0.1799 0.0016** 0.5904
9 6/26*** 0.0005*** 4 0.0006*** 0.4443 0.8351
10 18/14 0.5966 16 0.9285 0.2313 0.3972
11 9/23* 0.0201(*) 13 0.8488 0.4030 0.4434
12 9/23* 0.0201(*) 10 0.1273 >0.5 0.6131
Tot/Avg 5.33# 4 (2) 10.5 5 (1) 5 (3) 0.6408

*p < 0.05, **p < 0.01, ***p < 0.001; #average deviation: Σi |xi–n/2|/N for n = 32 and N = 12. ( ·) Number of violations adjusted for multiple tests after Sidak–Dunn.

Frontiers in Psychology | Quantitative Psychology and Measurement March 2012 | Volume 3 | Article 56 | 8

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement

	How predictable are “spontaneous decisions” and “hidden intentions”? Comparing classification results based on previous responses with multivariate pattern analysis of fMRI BOLD signals
	STUDY 1: Spontaneous Motor Decisions
	Methods
	Participants
	Results
	Classification Analysis
	Discussion

	STUDY 2: Hidden Intentions
	Results
	Discussion

	Conclusion
	References
	Acknowledgments
	Appendix


