4,953 research outputs found

    Classical simulation complexity of extended Clifford circuits

    Full text link
    Clifford gates are a winsome class of quantum operations combining mathematical elegance with physical significance. The Gottesman-Knill theorem asserts that Clifford computations can be classically efficiently simulated but this is true only in a suitably restricted setting. Here we consider Clifford computations with a variety of additional ingredients: (a) strong vs. weak simulation, (b) inputs being computational basis states vs. general product states, (c) adaptive vs. non-adaptive choices of gates for circuits involving intermediate measurements, (d) single line outputs vs. multi-line outputs. We consider the classical simulation complexity of all combinations of these ingredients and show that many are not classically efficiently simulatable (subject to common complexity assumptions such as P not equal to NP). Our results reveal a surprising proximity of classical to quantum computing power viz. a class of classically simulatable quantum circuits which yields universal quantum computation if extended by a purely classical additional ingredient that does not extend the class of quantum processes occurring.Comment: 17 pages, 1 figur

    Matchgates and classical simulation of quantum circuits

    Full text link
    Let G(A,B) denote the 2-qubit gate which acts as the 1-qubit SU(2) gates A and B in the even and odd parity subspaces respectively, of two qubits. Using a Clifford algebra formalism we show that arbitrary uniform families of circuits of these gates, restricted to act only on nearest neighbour (n.n.) qubit lines, can be classically efficiently simulated. This reproduces a result originally proved by Valiant using his matchgate formalism, and subsequently related by others to free fermionic physics. We further show that if the n.n. condition is slightly relaxed, to allowing the same gates to act only on n.n. and next-n.n. qubit lines, then the resulting circuits can efficiently perform universal quantum computation. From this point of view, the gap between efficient classical and quantum computational power is bridged by a very modest use of a seemingly innocuous resource (qubit swapping). We also extend the simulation result above in various ways. In particular, by exploiting properties of Clifford operations in conjunction with the Jordan-Wigner representation of a Clifford algebra, we show how one may generalise the simulation result above to provide further classes of classically efficiently simulatable quantum circuits, which we call Gaussian quantum circuits.Comment: 18 pages, 2 figure

    Commuting Quantum Circuits with Few Outputs are Unlikely to be Classically Simulatable

    Full text link
    We study the classical simulatability of commuting quantum circuits with n input qubits and O(log n) output qubits, where a quantum circuit is classically simulatable if its output probability distribution can be sampled up to an exponentially small additive error in classical polynomial time. First, we show that there exists a commuting quantum circuit that is not classically simulatable unless the polynomial hierarchy collapses to the third level. This is the first formal evidence that a commuting quantum circuit is not classically simulatable even when the number of output qubits is exponentially small. Then, we consider a generalized version of the circuit and clarify the condition under which it is classically simulatable. Lastly, we apply the argument for the above evidence to Clifford circuits in a similar setting and provide evidence that such a circuit augmented by a depth-1 non-Clifford layer is not classically simulatable. These results reveal subtle differences between quantum and classical computation.Comment: 19 pages, 6 figures; v2: Theorems 1 and 3 improved, proofs modifie

    A linearized stabilizer formalism for systems of finite dimension

    Full text link
    The stabilizer formalism is a scheme, generalizing well-known techniques developed by Gottesman [quant-ph/9705052] in the case of qubits, to efficiently simulate a class of transformations ("stabilizer circuits", which include the quantum Fourier transform and highly entangling operations) on standard basis states of d-dimensional qudits. To determine the state of a simulated system, existing treatments involve the computation of cumulative phase factors which involve quadratic dependencies. We present a simple formalism in which Pauli operators are represented using displacement operators in discrete phase space, expressing the evolution of the state via linear transformations modulo D <= 2d. We thus obtain a simple proof that simulating stabilizer circuits on n qudits, involving any constant number of measurement rounds, is complete for the complexity class coMod_{d}L and may be simulated by O(log(n)^2)-depth boolean circuits for any constant d >= 2.Comment: 25 pages, 3 figures. Reorganized to collect complexity results; some corrections and elaborations of technical results. Differs slightly from the version to be published (fixed typos, changes of wording to accommodate page breaks for a different article format). To appear as QIC vol 13 (2013), pp.73--11

    Classical simulation of Yang-Baxter gates

    Get PDF
    A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary representation of the braid group B n for every n≥2n \ge 2. If we view such an operator as a quantum-computational gate, then topological braiding corresponds to a quantum circuit. A basic question is when such a representation affords universal quantum computation. In this work, we show how to classically simulate these circuits when the gate in question belongs to certain families of solutions to the Yang-Baxter equation. These include all of the qubit (i.e., d=2d = 2) solutions, and some simple families that include solutions for arbitrary d≥2d \ge 2. Our main tool is a probabilistic classical algorithm for efficient simulation of a more general class of quantum circuits. This algorithm may be of use outside the present setting.Comment: 17 pages. Corrected error in proof of Theorem
    • …
    corecore