10,630 research outputs found

    Fuzzy Geometry of Phase Space and Quantization of Massive Fields

    Full text link
    The quantum space-time and the phase space with fuzzy structure is investigated as the possible quantization formalism. In this theory the state of nonrelativistic particle corresponds to the element of fuzzy ordered set (Foset) - fuzzy point. Due to Foset partial (weak) ordering, particle's space coordinate x acquires principal uncertainty dx. It's shown that Shroedinger formalism of Quantum Mechanics can be completely derived from consideration of particle evolution in fuzzy phase space with minimal number of axioms.Comment: 13 pages, Talk given at QFEXT07 Workshop, Leipzig, Sept. 200

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    A System of Interaction and Structure

    Full text link
    This paper introduces a logical system, called BV, which extends multiplicative linear logic by a non-commutative self-dual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, called the calculus of structures, which is the main contribution of this work. Structures are formulae submitted to certain equational laws typical of sequents. The calculus of structures is obtained by generalising the sequent calculus in such a way that a new top-down symmetry of derivations is observed, and it employs inference rules that rewrite inside structures at any depth. These properties, in addition to allow the design of BV, yield a modular proof of cut elimination.Comment: This is the authoritative version of the article, with readable pictures, in colour, also available at . (The published version contains errors introduced by the editorial processing.) Web site for Deep Inference and the Calculus of Structures at <http://alessio.guglielmi.name/res/cos

    Change and continuity: a morphological investigation of the creation of gated communities in post-reform Beijing

    Get PDF
    Alongside the socio-economic restructuring from a central planning system to a free market system, Beijing is being transformed into a “gated city of tomorrow” by building massive gated communities as a new form of private neighborhood planning and design. Although certain scholarly attentions have been received through the international debate over gated communities, there is a lack of systematic research on how these private urban landscapes are actually created at the micro-level and how their creation is related with historical development and social process. Therefore, this paper aims to contribute to an understanding of the origin and nature of the creation of gated communities in the setting of Beijing through a careful morphological investigation. More exactly, a set of private gated community schemes and a set of public produced neighborhood schemes of the early socialist period will be cross compared according to the major neighborhood morphological components in order to reveal the differences and similarities in their morphology, or in another sense the change and continuity in their planning and design. Meanwhile, the ideas and logics underpinning the changes will be accounted. Finally, design origins and the links between the morphological changes and the broad social process will be discussed in light of the research findings

    Kripke Semantics and Proof Systems for Combining Intuitionistic Logic and Classical Logic

    Get PDF
    International audienceWe combine intuitionistic logic and classical logic into a new, first-order logic called Polarized Intuitionistic Logic. This logic is based on a distinction between two dual polarities which we call red and green to distinguish them from other forms of polarization. The meaning of these polarities is defined model-theoretically by a Kripke-style semantics for the logic. Two proof systems are also formulated. The first system extends Gentzen's intuitionistic sequent calculus LJ. In addition, this system also bears essential similarities to Girard's LC proof system for classical logic. The second proof system is based on a semantic tableau and extends Dragalin's multiple-conclusion version of intuitionistic sequent calculus. We show that soundness and completeness hold for these notions of semantics and proofs, from which it follows that cut is admissible in the proof systems and that the propositional fragment of the logic is decidable

    Scalar and Vectorial mu-calculus with Atoms

    Get PDF
    We study an extension of modal Ό\mu-calculus to sets with atoms and we study its basic properties. Model checking is decidable on orbit-finite structures, and a correspondence to parity games holds. On the other hand, satisfiability becomes undecidable. We also show expressive limitations of atom-enriched Ό\mu-calculi, and explain how their expressive power depends on the structure of atoms used, and on the choice between basic or vectorial syntax

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u
    • 

    corecore