545 research outputs found

    Chromaticity of Certain 2-Connected Graphs

    Get PDF
    Since the introduction of the concepts of chromatically unique graphs and chromatically equivalent graphs, many families of such graphs have been obtained. In this thesis, we continue with the search of families of chromatically unique graphs and chromatically equivalent graphs. In Chapter 1, we define the concept of graph colouring, the associated chromatic polynomial and some properties of a chromatic polynomial. We also give some necessary conditions for graphs that are chromatically unique or chromatically equivalent. Chapter 2 deals with the chromatic classes of certain existing 2-connected (n, n + 1,)-graphs for z = 0, 1, 2 and 3. Many families of chromatically unique graphs and chromatically equivalent graphs of these classes have been obtained. At the end of the chapter, we re-determine the chromaticity of two families of 2-connected (n, n + 3)-graphs with at least two triangles. Our main results in this thesis are presented in Chapters 3, 4 and 5. In Chapter 3, we classify all the 2-connected (n, n + 4)-graphs wit h at least four triangles . In Chapter 4 , we classify all the 2-connected (n, n + 4)-graphs wit h t hree triangles and one induced 4-cycle. In Chapter 5, we classify all the 2-connected (n, n + 4)graphs with three triangles and at least two induced 4-cycles . In each chapter, we obtain new families of chromatically unique graphs and chromatically equivalent graphs. We end the thesis by classifying all the 2-connected (n, n + 4)-graphs with exactly three triangles. We also determine the chromatic polynomial of all these graphs. The determination of the chromaticity of most classes of these graphs is left as an open problem for future research

    Chromatic equivalence classes of certain generalized polygon trees

    Get PDF
    Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written G ∼ H, if P(G) = P(H). Let g denote the family of all generalized polygon trees with three interior regions. Xu (1994) showed that g is a union of chromatic equivalence classes under the equivalence relation '∼'. In this paper, we determine infinitely many chromatic equivalence classes in g under '∼'. As a byproduct, we obtain a family of chromatically unique graphs established by Peng (1995)

    Graph homomorphisms, the Tutte polynomial and “q-state Potts uniqueness”

    Get PDF
    We establish for which weighted graphs H homomorphism functions from multigraphs G to H are specializations of the Tutte polynomial of G, answering a question of Freedman, Lov´asz and Schrijver. We introduce a new property of graphs called “q-state Potts uniqueness” and relate it to chromatic and Tutte uniqueness, and also to “chromatic–flow uniqueness”, recently studied by Duan, Wu and Yu.Ministerio de Educación y Ciencia MTM2005-08441-C02-0

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164

    Chromatic Equivalence Classes and Chromatic Defining Numbers of Certain Graphs

    Get PDF
    There are two parts in this dissertation: the chromatic equivalence classes and the chromatic defining numbers of graphs. In the first part the chromaticity of the family of generalized polygon trees with intercourse number two, denoted by Cr (a, b; c, d), is studied. It is known that Cr( a, b; c, d) is a chromatic equivalence class if min {a, b, c, d} ≥ r+3. We consider Cr( a, b; c, d) when min{ a, b, c, d} ≤ r + 2. The necessary and sufficient conditions for Cr(a, b; c, d) with min {a, b, c, d} ≤ r + 2 to be a chromatic equivalence class are given. Thus, the chromaticity of Cr (a, b; c, d) is completely characterized. In the second part the defining numbers of regular graphs are studied. Let d(n, r, X = k) be the smallest value of defining numbers of all r-regular graphs of order n and the chromatic number equals to k. It is proved that for a given integer k and each r ≥ 2(k - 1) and n ≥ 2k, d(n, r, X = k) = k - 1. Next, a new lower bound for the defining numbers of r-regular k-chromatic graphs with k < r < 2( k - 1) is found. Finally, the value of d( n , r, X = k) when k < r < 2(k - 1) for certain values of n and r is determined
    corecore