6 research outputs found

    Author index

    Get PDF

    Master index: volumes 31–40

    Get PDF

    Absolute reflexive retracts and absolute bipartite retracts

    Get PDF
    AbstractIt is a well-known phenomenon in the study of graph retractions that most results about absolute retracts in the class of bipartite (irreflexive) graphs have analogues about absolute retracts in the class of reflexive graphs, and vice versa. In this paper we make some observations that make the connection explicit. We develop four natural transformations between reflexive graphs and bipartite graphs which preserve the property of being an absolute retract, and allow us to derive results about absolute reflexive retracts from similar results about absolute bipartite retracts and conversely. Then we introduce generic notions that specialize to the appropriate concepts in both cases. This paves the way to a unified view of both theories, leading to absolute retracts of general (i.e., partially reflexive) graphs

    Bi-complement Reducible Graphs

    Get PDF
    AbstractWe introduce a new family of bipartite graphs which is the bipartite analogue of the class ofcomplement reduciblegraphs orcographs. Abi-complement reduciblegraph orbi-cographis a bipartite graphG=(W∪B,E) that can be reduced to single vertices by recursively bi-complementing the edge set of all connected bipartite subgraphs. Thebi-complementedgraphḠbipofGis the graph having the same vertex setW∪BasG, while its edge set is equal toW×B−E. The aim of this paper is to show that there exists an equivalent definition of bi-cographs by three forbidden configurations. We also propose a tree representation for this class of graphs

    Beyond Helly graphs: the diameter problem on absolute retracts

    Full text link
    Characterizing the graph classes such that, on nn-vertex mm-edge graphs in the class, we can compute the diameter faster than in O(nm){\cal O}(nm) time is an important research problem both in theory and in practice. We here make a new step in this direction, for some metrically defined graph classes. Specifically, a subgraph HH of a graph GG is called a retract of GG if it is the image of some idempotent endomorphism of GG. Two necessary conditions for HH being a retract of GG is to have HH is an isometric and isochromatic subgraph of GG. We say that HH is an absolute retract of some graph class C{\cal C} if it is a retract of any G∈CG \in {\cal C} of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized O~(mn)\tilde{\cal O}(m\sqrt{n}) time. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of kk-chromatic graphs, for every fixed k≥3k \geq 3. Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs, respectively
    corecore