4,540 research outputs found

    Exploration and adaptation of large language models for specialized domains

    Get PDF
    Large language models have transformed the field of natural language processing (NLP). Their improved performance on various NLP benchmarks makes them a promising tool—also for the application in specialized domains. Such domains are characterized by highly trained professionals with particular domain expertise. Since these experts are rare, improving the efficiency of their work with automated systems is especially desirable. However, domain-specific text resources hold various challenges for NLP systems. These challenges include distinct language, noisy and scarce data, and a high level of variation. Further, specialized domains present an increased need for transparent systems since they are often applied in high stakes settings. In this dissertation, we examine whether large language models (LLMs) can overcome some of these challenges and propose methods to effectively adapt them to domain-specific requirements. We first investigate the inner workings and abilities of LLMs and show how they can fill the gaps that are present in previous NLP algorithms for specialized domains. To this end, we explore the sources of errors produced by earlier systems to identify which of them can be addressed by using LLMs. Following this, we take a closer look at how information is processed within Transformer-based LLMs to better understand their capabilities. We find that their layers encode different dimensions of the input text. Here, the contextual vector representation, and the general language knowledge learned during pre-training are especially beneficial for solving complex and multi-step tasks common in specialized domains. Following this exploration, we propose solutions for further adapting LLMs to the requirements of domain-specific tasks. We focus on the clinical domain, which incorporates many typical challenges found in specialized domains. We show how to improve generalization by integrating different domain-specific resources into our models. We further analyze the behavior of the produced models and propose a behavioral testing framework that can serve as a tool for communication with domain experts. Finally, we present an approach for incorporating the benefits of LLMs while fulfilling requirements such as interpretability and modularity. The presented solutions show improvements in performance on benchmark datasets and in manually conducted analyses with medical professionals. Our work provides both new insights into the inner workings of pre-trained language models as well as multiple adaptation methods showing that LLMs can be an effective tool for NLP in specialized domains

    A Comparison of Classical Versus Deep Learning Techniques for Abusive Content Detection on Social Media Sites

    Get PDF
    The automated detection of abusive content on social media websites faces a variety of challenges including imbalanced training sets, the identification of an appropriate feature representation and the selection of optimal classifiers. Classifiers such as support vector machines (SVM), combined with bag of words or ngram feature representation, have traditionally dominated in text classification for decades. With the recent emergence of deep learning and word embeddings, an increasing number of researchers have started to focus on deep neural networks. In this paper, our aim is to explore cutting-edge techniques in automated abusive content detection. We use two deep learning approaches: convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We apply these to 9 public datasets derived from various social media websites. Firstly, we show that word embeddings pre-trained on the same data source as the subsequent classification task improves the prediction accuracy of deep learning models. Secondly, we investigate the impact of different levels of training set imbalances on classifier types. In comparison to the traditional SVM classifier, we identify that although deep learning models can outperform the classification results of the traditional SVM classifier when the associated training dataset is seriously imbalanced, the performance of the SVM classifier can be dramatically improved through the use of oversampling, surpassing the deep learning models. Our work can inform researchers in selecting appropriate text classification strategies in the detection of abusive content, including scenarios where the training datasets suffer from class imbalance
    • …
    corecore