43,708 research outputs found

    Dimension Reduction by Mutual Information Discriminant Analysis

    Get PDF
    In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are based on transformations that simultaneously maximize the between-class scatter and minimize the withinclass scatter matrices. This paper presents a novel DA algorithm for feature extraction using mutual information (MI). However, it is not always easy to obtain an accurate estimation for high-dimensional MI. In this paper, we propose an efficient method for feature extraction that is based on one-dimensional MI estimations. We will refer to this algorithm as mutual information discriminant analysis (MIDA). The performance of this proposed method was evaluated using UCI databases. The results indicate that MIDA provides robust performance over different data sets with different characteristics and that MIDA always performs better than, or at least comparable to, the best performing algorithms.Comment: 13pages, 3 tables, International Journal of Artificial Intelligence & Application

    Nature-Inspired Learning Models

    Get PDF
    Intelligent learning mechanisms found in natural world are still unsurpassed in their learning performance and eficiency of dealing with uncertain information coming in a variety of forms, yet remain under continuous challenge from human driven artificial intelligence methods. This work intends to demonstrate how the phenomena observed in physical world can be directly used to guide artificial learning models. An inspiration for the new learning methods has been found in the mechanics of physical fields found in both micro and macro scale. Exploiting the analogies between data and particles subjected to gravity, electrostatic and gas particle fields, new algorithms have been developed and applied to classification and clustering while the properties of the field further reused in regression and visualisation of classification and classifier fusion. The paper covers extensive pictorial examples and visual interpretations of the presented techniques along with some testing over the well-known real and artificial datasets, compared when possible to the traditional methods

    A Family of Maximum Margin Criterion for Adaptive Learning

    Full text link
    In recent years, pattern analysis plays an important role in data mining and recognition, and many variants have been proposed to handle complicated scenarios. In the literature, it has been quite familiar with high dimensionality of data samples, but either such characteristics or large data have become usual sense in real-world applications. In this work, an improved maximum margin criterion (MMC) method is introduced firstly. With the new definition of MMC, several variants of MMC, including random MMC, layered MMC, 2D^2 MMC, are designed to make adaptive learning applicable. Particularly, the MMC network is developed to learn deep features of images in light of simple deep networks. Experimental results on a diversity of data sets demonstrate the discriminant ability of proposed MMC methods are compenent to be adopted in complicated application scenarios.Comment: 14 page
    corecore