387 research outputs found

    Performance guarantees for greedy maximization of non-submodular controllability metrics

    Full text link
    A key problem in emerging complex cyber-physical networks is the design of information and control topologies, including sensor and actuator selection and communication network design. These problems can be posed as combinatorial set function optimization problems to maximize a dynamic performance metric for the network. Some systems and control metrics feature a property called submodularity, which allows simple greedy algorithms to obtain provably near-optimal topology designs. However, many important metrics lack submodularity and therefore lack provable guarantees for using a greedy optimization approach. Here we show that performance guarantees can be obtained for greedy maximization of certain non-submodular functions of the controllability and observability Gramians. Our results are based on two key quantities: the submodularity ratio, which quantifies how far a set function is from being submodular, and the curvature, which quantifies how far a set function is from being supermodular

    Efficient Data Representation by Selecting Prototypes with Importance Weights

    Full text link
    Prototypical examples that best summarizes and compactly represents an underlying complex data distribution communicate meaningful insights to humans in domains where simple explanations are hard to extract. In this paper we present algorithms with strong theoretical guarantees to mine these data sets and select prototypes a.k.a. representatives that optimally describes them. Our work notably generalizes the recent work by Kim et al. (2016) where in addition to selecting prototypes, we also associate non-negative weights which are indicative of their importance. This extension provides a single coherent framework under which both prototypes and criticisms (i.e. outliers) can be found. Furthermore, our framework works for any symmetric positive definite kernel thus addressing one of the key open questions laid out in Kim et al. (2016). By establishing that our objective function enjoys a key property of that of weak submodularity, we present a fast ProtoDash algorithm and also derive approximation guarantees for the same. We demonstrate the efficacy of our method on diverse domains such as retail, digit recognition (MNIST) and on publicly available 40 health questionnaires obtained from the Center for Disease Control (CDC) website maintained by the US Dept. of Health. We validate the results quantitatively as well as qualitatively based on expert feedback and recently published scientific studies on public health, thus showcasing the power of our technique in providing actionability (for retail), utility (for MNIST) and insight (on CDC datasets) which arguably are the hallmarks of an effective data mining method.Comment: Accepted for publication in International Conference on Data Mining (ICDM) 201

    Parsimonious Black-Box Adversarial Attacks via Efficient Combinatorial Optimization

    Full text link
    Solving for adversarial examples with projected gradient descent has been demonstrated to be highly effective in fooling the neural network based classifiers. However, in the black-box setting, the attacker is limited only to the query access to the network and solving for a successful adversarial example becomes much more difficult. To this end, recent methods aim at estimating the true gradient signal based on the input queries but at the cost of excessive queries. We propose an efficient discrete surrogate to the optimization problem which does not require estimating the gradient and consequently becomes free of the first order update hyperparameters to tune. Our experiments on Cifar-10 and ImageNet show the state of the art black-box attack performance with significant reduction in the required queries compared to a number of recently proposed methods. The source code is available at https://github.com/snu-mllab/parsimonious-blackbox-attack.Comment: Accepted and to appear at ICML 201

    Streaming Non-monotone Submodular Maximization: Personalized Video Summarization on the Fly

    Full text link
    The need for real time analysis of rapidly producing data streams (e.g., video and image streams) motivated the design of streaming algorithms that can efficiently extract and summarize useful information from massive data "on the fly". Such problems can often be reduced to maximizing a submodular set function subject to various constraints. While efficient streaming methods have been recently developed for monotone submodular maximization, in a wide range of applications, such as video summarization, the underlying utility function is non-monotone, and there are often various constraints imposed on the optimization problem to consider privacy or personalization. We develop the first efficient single pass streaming algorithm, Streaming Local Search, that for any streaming monotone submodular maximization algorithm with approximation guarantee α\alpha under a collection of independence systems I{\cal I}, provides a constant 1/(1+2/α+1/α+2d(1+α))1/\big(1+2/\sqrt{\alpha}+1/\alpha +2d(1+\sqrt{\alpha})\big) approximation guarantee for maximizing a non-monotone submodular function under the intersection of I{\cal I} and dd knapsack constraints. Our experiments show that for video summarization, our method runs more than 1700 times faster than previous work, while maintaining practically the same performance
    • …
    corecore