281 research outputs found

    Implementing Performance Competitive Logical Recovery

    Full text link
    New hardware platforms, e.g. cloud, multi-core, etc., have led to a reconsideration of database system architecture. Our Deuteronomy project separates transactional functionality from data management functionality, enabling a flexible response to exploiting new platforms. This separation requires, however, that recovery is described logically. In this paper, we extend current recovery methods to work in this logical setting. While this is straightforward in principle, performance is an issue. We show how ARIES style recovery optimizations can work for logical recovery where page information is not captured on the log. In side-by-side performance experiments using a common log, we compare logical recovery with a state-of-the art ARIES style recovery implementation and show that logical redo performance can be competitive.Comment: VLDB201

    Enabling Operator Reordering in Data Flow Programs Through Static Code Analysis

    Full text link
    In many massively parallel data management platforms, programs are represented as small imperative pieces of code connected in a data flow. This popular abstraction makes it hard to apply algebraic reordering techniques employed by relational DBMSs and other systems that use an algebraic programming abstraction. We present a code analysis technique based on reverse data and control flow analysis that discovers a set of properties from user code, which can be used to emulate algebraic optimizations in this setting.Comment: 4 pages, accepted and presented at the First International Workshop on Cross-model Language Design and Implementation (XLDI), affiliated with ICFP 2012, Copenhage

    Near-Optimal Sensor Scheduling for Batch State Estimation: Complexity, Algorithms, and Limits

    Full text link
    In this paper, we focus on batch state estimation for linear systems. This problem is important in applications such as environmental field estimation, robotic navigation, and target tracking. Its difficulty lies on that limited operational resources among the sensors, e.g., shared communication bandwidth or battery power, constrain the number of sensors that can be active at each measurement step. As a result, sensor scheduling algorithms must be employed. Notwithstanding, current sensor scheduling algorithms for batch state estimation scale poorly with the system size and the time horizon. In addition, current sensor scheduling algorithms for Kalman filtering, although they scale better, provide no performance guarantees or approximation bounds for the minimization of the batch state estimation error. In this paper, one of our main contributions is to provide an algorithm that enjoys both the estimation accuracy of the batch state scheduling algorithms and the low time complexity of the Kalman filtering scheduling algorithms. In particular: 1) our algorithm is near-optimal: it achieves a solution up to a multiplicative factor 1/2 from the optimal solution, and this factor is close to the best approximation factor 1/e one can achieve in polynomial time for this problem; 2) our algorithm has (polynomial) time complexity that is not only lower than that of the current algorithms for batch state estimation; it is also lower than, or similar to, that of the current algorithms for Kalman filtering. We achieve these results by proving two properties for our batch state estimation error metric, which quantifies the square error of the minimum variance linear estimator of the batch state vector: a) it is supermodular in the choice of the sensors; b) it has a sparsity pattern (it involves matrices that are block tri-diagonal) that facilitates its evaluation at each sensor set.Comment: Correction of typos in proof

    Performance guarantees for greedy maximization of non-submodular controllability metrics

    Full text link
    A key problem in emerging complex cyber-physical networks is the design of information and control topologies, including sensor and actuator selection and communication network design. These problems can be posed as combinatorial set function optimization problems to maximize a dynamic performance metric for the network. Some systems and control metrics feature a property called submodularity, which allows simple greedy algorithms to obtain provably near-optimal topology designs. However, many important metrics lack submodularity and therefore lack provable guarantees for using a greedy optimization approach. Here we show that performance guarantees can be obtained for greedy maximization of certain non-submodular functions of the controllability and observability Gramians. Our results are based on two key quantities: the submodularity ratio, which quantifies how far a set function is from being submodular, and the curvature, which quantifies how far a set function is from being supermodular
    corecore