139 research outputs found

    Mean-Field methods for Structured Deep-Learning in Computer Vision

    Get PDF
    In recent years, Machine Learning based Computer Vision techniques made impressive progress. These algorithms proved particularly efficient for image classification or detection of isolated objects. From a probabilistic perspective, these methods can predict marginals, over single or multiple variables, independently, with high accuracy. However, in many tasks of practical interest, we need to predict jointly several correlated variables. Practical applications include people detection in crowded scenes, image segmentation, surface reconstruction, 3D pose estimation and others. A large part of the research effort in today's computer-vision community aims at finding task-specific solutions to these problems, while leveraging the power of Deep-Learning based classifiers. In this thesis, we present our journey towards a generic and practical solution based on mean-field (MF) inference. Mean-field is a Statistical Physics-inspired method which has long been used in Computer-Vision as a variational approximation to posterior distributions over complex Conditional Random Fields. Standard mean-field optimization is based on coordinate descent and in many situations can be impractical. We therefore propose a novel proximal gradient-based approach to optimizing the variational objective. It is naturally parallelizable and easy to implement. We prove its convergence, and then demonstrate that, in practice, it yields faster convergence and often finds better optima than more traditional mean-field optimization techniques. Then, we show that we can replace the fully factorized distribution of mean-field by a weighted mixture of such distributions, that similarly minimizes the KL-Divergence to the true posterior. Our extension of the clamping method proposed in previous works allows us to both produce a more descriptive approximation of the true posterior and, inspired by the diverse MAP paradigms, fit a mixture of mean-field approximations. We demonstrate that this positively impacts real-world algorithms that initially relied on mean-fields. One of the important properties of the mean-field inference algorithms is that the closed-form updates are fully differentiable operations. This naturally allows to do parameter learning by simply unrolling multiple iterations of the updates, the so-called back-mean-field algorithm. We derive a novel and efficient structured learning method for multi-modal posterior distribution based on the Multi-Modal Mean-Field approximation, which can be seamlessly combined to modern gradient-based learning methods such as CNNs. Finally, we explore in more details the specific problem of structured learning and prediction for multiple-people detection in crowded scenes. We then present a mean-field based structured deep-learning detection algorithm that provides state of the art results on this dataset

    Automatic & Semi-Automatic Methods for Supporting Ontology Change

    Get PDF

    Semantic multimedia analysis using knowledge and context

    Get PDF
    PhDThe difficulty of semantic multimedia analysis can be attributed to the extended diversity in form and appearance exhibited by the majority of semantic concepts and the difficulty to express them using a finite number of patterns. In meeting this challenge there has been a scientific debate on whether the problem should be addressed from the perspective of using overwhelming amounts of training data to capture all possible instantiations of a concept, or from the perspective of using explicit knowledge about the concepts’ relations to infer their presence. In this thesis we address three problems of pattern recognition and propose solutions that combine the knowledge extracted implicitly from training data with the knowledge provided explicitly in structured form. First, we propose a BNs modeling approach that defines a conceptual space where both domain related evi- dence and evidence derived from content analysis can be jointly considered to support or disprove a hypothesis. The use of this space leads to sig- nificant gains in performance compared to analysis methods that can not handle combined knowledge. Then, we present an unsupervised method that exploits the collective nature of social media to automatically obtain large amounts of annotated image regions. By proving that the quality of the obtained samples can be almost as good as manually annotated images when working with large datasets, we significantly contribute towards scal- able object detection. Finally, we introduce a method that treats images, visual features and tags as the three observable variables of an aspect model and extracts a set of latent topics that incorporates the semantics of both visual and tag information space. By showing that the cross-modal depen- dencies of tagged images can be exploited to increase the semantic capacity of the resulting space, we advocate the use of all existing information facets in the semantic analysis of social media

    The EDAM Project: Mining Atmospheric Aerosol Datasets

    Get PDF
    Data mining has been a very active area of research in the database, machine learning, and mathematical programming communities in recent years. EDAM (Exploratory Data Analysis and Management) is a joint project between researchers in Atmospheric Chemistry and Computer Science at Carleton College and the University of Wisconsin-Madison that aims to develop data mining techniques for advancing the state of the art in analyzing atmospheric aerosol datasets. There is a great need to better understand the sources, dynamics, and compositions of atmospheric aerosols. The traditional approach for particle measurement, which is the collection of bulk samples of particulates on filters, is not adequate for studying particle dynamics and real-time correlations. This has led to the development of a new generation of real-time instruments that provide continuous or semi-continuous streams of data about certain aerosol properties. However, these instruments have added a significant level of complexity to atmospheric aerosol data, and dramatically increased the amounts of data to be collected, managed, and analyzed. Our abilit y to integrate the data from all of these new and complex instruments now lags far behind our data-collection capabilities, and severely limits our ability to understand the data and act upon it in a timely manner. In this paper, we present an overview of the EDAM project. The goal of the project, which is in its early stages, is to develop novel data mining algorithms and approaches to managing and monitoring multiple complex data streams. An important objective is data quality assurance, and real-time data mining offers great potential. The approach that we take should also provide good techniques to deal with gas-phase and semi-volatile data. While atmospheric aerosol analysis is an important and challenging domain that motivates us with real problems and serves as a concrete test of our results, our objective is to develop techniques that have broader applicability, and to explore some fundamental challenges in data mining that are not specific to any given application domain
    • …
    corecore