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Abstract

The Semantic Web vision consists in encoding the knowledge made available on

the web in a way which can be understood by machines as well as by humans.

Over the last years more and more semantic data has been published on the web.

Semantic data is made available in the form of ontologies – formal models of a

domain of interest. As the underlying domain or the requirements for a specific

ontology may change, the knowledge encoded in it is also changing over time.

Therefore, changes to the ontologies are necessary. However, these changes are

complicated, as the knowledge in the ontology is usually highly interlinked and

only experts may be able to understand the complete formalization.

The main topic of this thesis is the development of methods which support

and thus facilitate the ontology change process.

The contributions of this thesis are threefold: Firstly, existing change sup-

port methods are analysed and classified according to a newly proposed classi-

fication scheme.

Secondly, a method for inducing additional facts from the existing ontology is

proposed. Our contribution lies in the definition of kernel functions for Resource

Description Framework (RDF) data which may be used for classifying entities

as well as for predicting links between entities. The proposed methods may

be used for completing an existing ontology with facts that have not explicitely

been stated and are not derivable (or rejectable) by means of deductive methods.

Thirdly, a framework is proposed which allows for the automatic handling of

complex update requests. The approach is based on the identification of change

patterns, which describe sets of frequently occurring changes. Such changes

may be predefined in the proposed framework and then be instantiated later on.

This approach allows users who are not familiar with the precise formalization

of knowledge in the ontology to perform changes on it.
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Chapter 1

Introduction

With the broad uptake of the Semantic Web more and more semantic data is

made available on the web. As an official standard of the World Wide Web

Consortium (W3C), the Resource Description Framework (RDF) establishes

a universal graph-based data model which is sometimes claimed to form the

backbone of the so-called “Semantic Web” (Manola and Miller, 2004). Recent

efforts of research, industry and public institutions in the context of Linked

Open Data (LOD) initiatives have led to considerable amounts of RDF data

sets being made available and linked to each other on the web (Bizer et al.,

2009a). Semantic Web data is available nowadays for many domains: wikipedia

facts1, government data2, geo data3 etc. As an illustration of the size of today’s

Semantic Web, consider the statistics of the search engine Sindice4, which in

June 2011 counts a total of over 260 million indexed RDF documents.

Semantic data is available on the Semantic Web in the form of so-called

ontologies which provide descriptions of concepts, relations and individuals in

a domain of interest. The manual creation of these ontologies is expensive and

difficult. Thus, various ways for supporting the process of making data avail-

able have been proposed: from support of the manual generation to extraction

from text or wrappers around “traditional” data sources like relational database

systems.

No matter which possibility was used for creating a data source, the problem

of its maintenance arises. New information about the domain may become

available, information about the described entities may have to be updated or

modelling errors may be detected. The issue of incorporating new information

is particularly complex in the context of Semantic Web data:

• In these data sources the information is often not represented explicitely in

1http://dbpedia.org
2http://data.gov.uk/linked-data
3http://ckan.net/dataset/linkedgeodata
4http://sindice.com
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4 CHAPTER 1. INTRODUCTION

the knowledge base. The logic formalisms underlying Semantic Web data

representations define reasoning methods which allow for the deduction

of additional knowledge from the ontology by means of logic inference.

This inferred knowledge is difficult to handle in the context of update and

change operations.

• The limited expressivity of lightweight ontology data limits the possibility

of constraining relations between entities of interest. However, in the mod-

eled data such constraints may exist, e.g. relations or type memberships

that can not occur together.

• Specific changes to an ontology may require additional changes in order to

obtain a complete, consistent, coherent ontology which does not contain

undesired information. An example of this difficulty is the deletion of data

which is required for a specific entity. In this case, the deleted information

has to be replaced by some new updated information.

A second problem is that often information is missing in the knowledge

base as it cannot be stated with certainty as would be required by the logical

formalisms underlying Semantic Web data or as it was just forgot during the

modelling phase. Reasoning approaches define rules for deducing facts that have

to be true based on the given ontology. However, these rules are often not helpful

for searching the precise facts that hold in special cases, e.g. it may be possible

to infer from an ontology that an entity has to have a specific property, but a

statement about its value may not be possible. As a concrete example, consider

an ontology where it may be deduced that a person has to have a gender, but

the gender of a concrete person may not be deducable. Inductive – data-driven –

approaches can deal with these issues which can not be overcome using classical

reasoning regimes: The analysis of the data with statistical methods may be

able to derive knowledge which is not made explicit in the knowledge base but

which still has a high likelihood of being true based on the explicit knowledge.

The complexity of ontology maintenance makes methods for supporting on-

tology change desirable, which support the ontology engineer in incorporating

new information into the ontology, in detecting problems of the current ontol-

ogy state and in adapting an ontology for new applications. In this thesis, the

ontology support process is analysed, an overview of existing ontology change

support methods is given and the problems of current support methods are

analysed. Based on this analysis, two research questions are identified and the

solutions for these problems which are developed in the scope of this thesis are

presented. In the following, an overview of the research questions and the pro-

posed solutions is given (see Section 1.1), before presenting an overview of this

thesis in Section 1.2.
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1.1 Research questions and Contributions

The problems described above are addressed in this thesis through the following

research questions:

• How can uncertain facts be induced from a lightweight ontologies in a

domain-independent way?

This research question has been addressed in two parts: we have developed

kernel-based methods for classifying entities in an RDF dataset and for

link prediction in RDF datasets (Lösch et al., 2012).

The usage of RDF data in machine learning tasks requires the definition

of suitable data representations that allow for the integration of these

new kinds of data into existing machine learning algorithms. We have

developed a set of kernel functions for learning from RDF data based on

the underlying graph representation. In our experiments we can show

that the proposed kernel functions achieve competitive results with hand-

crafted semantics-based data representations and can outperform classical

graph kernels applied to RDF graphs.

In a second part we have developed a kernel-based approach for link pre-

diction in RDF data and have instantiated it with the kernel functions for

RDF entities. In our evaluation we show that the proposed link prediction

method combined with our kernel functions can outperform a statistical

relational learning approach.

• How can knowledge bases be updated automatically, such that new infor-

mation can automatically be incorporated into the knowledge base without

making it inconsistent or incoherent?

The second research question has been addressed by developing a method

for automatically processing frequently occurring changes in an ontology

(Lösch et al., 2009). The approach consists in having the knowledge en-

gineer define how certain changes are to be dealt with by the knowledge

base beforehand and to carry out these additional changes when a change

request is submitted. A system architecture and its instantiation for RDF

knowledge bases are developed. The approach has been extended to an

interactive setting where the knowledge worker is supported in the change

process based on pre-defined change definitions and the actual changes to

be made to the ontology are obtained from the interaction of the knowl-

edge worker and the system.
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1.2 Overview of this thesis

In Chapters 2 and 3 we will introduce the foundations of Semantic Technolo-

gies and Machine Learning, the two fields of research in which the contributions

of this thesis are situated. We will define the most important terms and give

definitions of the methods and terms that will be used later on in the thesis.

In Chapter 2 we will present foundations of the Resource Description Frame-

work (RDF), the Simple Protocol and RDF Query Language (SPARQL) and

SPARQL Update. Chapter 3 presents background on kernel methods, Support

Vector Machines (SVMs) and graph mining.

Then, the research carried out in the scope of this thesis is presented: Chap-

ter 4 presents a classification of ontology changes and the methods proposed in

earlier work to support the ontology change process. We will present a classi-

fication schema for the support methods which is based on an analysis of the

reason for changing the ontology and the phase of the change process which is

supported by this work. We will discuss existing approaches and their classifi-

cation into the proposed classification scheme. Based on this analysis, we will

identify issues which are not sufficiently addressed by existing approaches and

motivate our research questions from them.

Chapter 5 and 6 present a solution for learning in light-weight (RDF) on-

tologies. In Chapter 5 a set of kernel functions for RDF entities based on

intersection graphs resp. intersection trees are presented. The proposed kernel

functions compare RDF entities based on common elements in the neighborhood

of the entities in the data graph. Theoretical results are presented which iden-

tify structures in the intersection graph and the intersection tree based on which

valid kernel functions are defined. The proposed kernel functions are evaluated

and compared to general graph kernels and other kernel functions which have

been deviced specifically for Semantic Web data in two evaluation scenarios:

prediction of affiliations in the SWRC dataset, a dataset representing a research

group with projects and publications, and prediction of a user’s age in social

network data. While in Chapter 5 the focus lies on the problem of classify-

ing RDF entities, we show how the proposed kernel functions can be used for

link prediction in RDF data sets. Therefore, a kernel function for RDF links

is defined based on the kernel functions presented in Chapter 5. The adapted

method is evaluated in two scenarios and compared to statistical link prediction

methods.

Chapter 7 presents an approach for supporting changes in ontology update

scenarios: a framework for dealing with“expected”ontology changes, i.e. to deal

with kinds of changes that frequently occur, is presented. The approach allows

for the specification of procedures to deal with these changes. The design choices

that had to be made when designing this system, are presented and discussed.

A language for defining these specifications in the case of RDF knowledge bases
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is defined. In a number of examples the usefulness and the flexibility of the

approach are demonstrated. An interactive extension of the basic approach is

also presented in this chapter.

In Chapter 8 the results of this thesis are summarized and an outlook to

future applications and research is given.
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Chapter 2

Semantic Technologies

The idea behind the development of Semantic Technologies is to encode the

meaning and the representation of data separately, such that machines and

humans can understand and work with the data. Thus, the ultimate goal is to

make data understandable to machines.

While these ideas have been studied for decades in the context of knowledge

representation in Artificial Intelligence, they have only lately been applied in

the context of the World Wide Web.

The so-called Semantic Web aims at bringing semantic data to the web, i.e.

to allow machines to understand the meaning of data that is published on the

Web (Berners-Lee et al., 2001). In the past ten years a lot of effort has been

put into achieving this vision.

An important concept for achieving the Semantic Web vision is that of an

ontology:

Definition 1 (Ontology) An ontology is a formal, explicit specification of a

shared conceptualisation (Studer et al., 1998).

An ontology thus is a description of a domain of interest in terms of concepts

that are relevant for this domain. These relevant concepts and constraints on

these concepts have to be made explicit. The whole ontology has to be declared

using a formalism which is machine-readable (i.e. not in natural language). Last

but not least the ontology is a “shared” conceptualisation, which means that a

group of people has agreed on this representation of the knowledge about the

domain of interest.

Ontologies constitute one of the central concepts in the field of Semantic

Web technologies and facilitate information integration and exchange as well

as semantic search. They are perceived as the building blocks of the Semantic

Web. Usually, the expressive power of ontologies exceeds that of traditional

databases and allows to infer new information that is not explicitly present in the

specification but a logical consequence of it (the so-called implicit knowledge).

11



12 CHAPTER 2. SEMANTIC TECHNOLOGIES

Typically, an ontology consists of two parts: terminological knowledge, which

defines the concepts, properties and relations which exist in the domain, and

assertional knowledge which defines concrete instances of the concepts and their

relations among each other. The World Wide Web Consortium (W3C) has

developed and published standards for defining various kind of data: Facts and

relations may be expressed using the Resource Description Framework (RDF),

the Resource Description Framework Schema (RDFS) is used to express type

relations as well as domain and range restrictions, more complex restrictions (like

disjointness of classes) can be stated using the Web Ontology Language (OWL).

Finally, semantic data may be queried using the Simple Protocol and RDF

Query Language (SPARQL), and it may be updated using SPARQL Update.

In the following sections, those technologies that are of importance in the

context of this thesis, namely RDF, RDFS, SPARQL and SPARQL/Update will

be presented.

2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) (Manola and Miller, 2004) stan-

dard, which provides a versatile graph-based data model, connecting resources

and basic data values by typed links, forms the backbone of the current Seman-

tic Web. RDF is the data representation for which all the methods proposed in

this thesis were conceived and implemented. In Chapter 5 we will develop meth-

ods for learning from RDF data. In Chapter 6 these methods will be applied to

the problem of link prediction in RDF. Finally, the implementation provided

for the ontology update framework presented in Chapter 7 enables automatic

updates of RDF knowledge bases.

2.1.1 RDF data model

RDF is based on the idea of describing and linking arbitrary entities (identified

by Uniform Resource Identifiers (URIs)) and data values by means of typed

links (also identified by URIs) in sets of simple statements (“RDF triples”).

The structure of the statement triples is devised in analogy with the basic

structures we find in natural language sentences. Correspondingly, the first

argument of each statement (any entity name) is referred to as the subject, the

second argument (any property name) as the predicate, and the third argument

(any entity name or value of one of the admitted data types) as the object.

Hereby, RDF uses URIs identifying the subjects and predicates in statements.

In case the object of a triple is an entity, it is also identified by a URI, in case the

predicate denotes a data-typed relation, the object is formed by the datatype

value.
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Example 2 (People and Topics) RDF allows us to encode basic information

about persons as follows (RDF abstract syntax)1:

person100 foaf:name "Uta Lı̈¿1
2sch"

person100 foaf:topic_interest topic110

topic110 skos:prefLabel "Machine Learning"

person100 foaf:knows person200

person200 foaf:name "Achim Rettinger"

person200 foaf:topic_interest topic110

person100 foaf:topic_interest topic120

topic120 skos:prefLabel "Ontology Update"

person100 foaf:knows person300

person300 foaf:name "Sebastian Rudolph"

person300 foaf:topic_interest topic120

Blank nodes are a special type of nodes in RDF. This kind of node is e.g.

used for modelling n-ary relations. A blank node is an RDF node just like any

other, but it does not have a URI. It is thus not possible to reference this

node - the node only gets an identifier for the purpose of serializing the graph.

RDF additionally includes some more advanced concepts like the specification

of sets and lists (see (Manola and Miller, 2004) for more information on these

advanced concepts) or the possibility to make statements about statements (so-

called reification). All these complex data structures are again represented by

means of triples.

The triples represent a graph structure, where each entity name resp. data-

type value which occurs as either subject or object of a triple represents a node

in the graph. Each triple describes an edge in the graph: the edge links the

subject to the object of the triple, the predicate defines the label of the edge.

A set of RDF statements thus implicitly describes a directed and labeled graph.

The structure and labels of the graph represent the overall RDF knowledge

structure.

Example 3 (People and Topics cont.) The graph corresponding to the triples

in our example is shown in Fig. 2.1.

Over the last years a lot of effort has been put into making RDF data avail-

able on the web. Especially the effort around Linked Open Data (LOD) has got

a lot of attention. The people involved in this initiative are pushing the publi-

cation of RDF datasets on the web in a way that these datasets are interlinked.

1The statements use property names taken from well-known RDF-based metadata stan-

dards such as Friend of a Friend (FOAF) (Brickley and Miller, 2007) and Simple Knowledge

Organisation Systems (SKOS) (Miles and Brickley, 2005), marked by the corresponding foaf

and skos namespaces.
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person 100 person 200person 300

topic110topic120

Uta Lösch Achim RettingerSebastian Rudolph

Machine LearningOntology Update

foaf:name foaf:name foaf:name
foaf:knows

foaf:knowsfoaf:knows

foaf:knows

foaf:topic_
interest

foaf:topic_
interest

foaf:topic_
interest

foaf:topic_
interest

skos:pref_labelskos:pref_label

Figure 2.1: RDF graph corresponding to triples in Example 2

The most well-known data set which was published as part of the LOD effort,

is DBpedia, which is a dataset representing Wikipedia’s entities, categories as

well as some data which can automatically be extracted from Wikipedia pages

(Bizer et al., 2009b).

2.1.2 Resource Description Framework Schema (RDFS)

With its extension RDFS, RDF constitutes a so-called “leightweight” ontology

language, providing basic modeling features for assertional (instance-related)

and terminological knowledge handling classes, binary relations (so-called prop-

erties), hierarchies of classes (also referred to as taxonomies) and properties as

well as domain and range specifications for properties.

Specifically, RDFS is a vocabulary with specific properties for modelling

meta-information on the presented data, i.e. schema information for the data.

The most important among these properties are rdfs:label for giving human-

readable labels to URIs, rdfs:domain and rdfs:range for denoting the domain

and the range of a property, and rdfs:subClassOf for denoting subsumptions

between two concepts.

Example 4 (People and Topics cont.) RDFS allows for the encoding of re-

strictions on the properties and the concepts in the data graph. In the example

we express that the foaf:name property links a person to a literal:

foaf:name rdfs:domain foaf:Person

foaf:name rdfs:range rdfs:Literal

...

The notation of RDFS triples is the same as for RDF triples. However, their

semantics is a different one as we will see in the following section.
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2.1.3 RDF Semantics

RDF offers formal semantics which are defined in the RDF specification (Hayes,

2004). These semantics allow for basic reasoning over RDF data. While only few

operations are possible on RDF itself, it becomes possible to infer entity types

via domain and range restrictions of properties as well via type hierarchies using

RDFS. However, the reasoning possibilities within RDF/RDFS remain limited,

as complex restrictions like intersection or disjointness can not be expressed

using these formalisms. For more complex modelling capabilities it would be

necessary to resort to OWL (Hitzler et al., 2009).

Definition 5 (Interpretation set) A simple interpretation I of an RDF vo-

cabulary V is defined by:

• A non-empty set IR of resources, called the domain or universe of I.

• A set IP , called the set of properties of I.

• A mapping IEXT from IP into the powerset of IR × IR i.e. the set of

sets of pairs (x, y) with x and y in IR .

• A mapping IS from URI references in V into (IR ∪ IP )

• A mapping IL from typed literals in V into IR.

• A distinguished subset LV of IR, called the set of literal values, which

contains all the plain literals in V

Based on the above sets and functions an interpretation function is defined:

Definition 6 (Interpretation function) The interpretation function .I is de-

fined as:

• Each untyped literal a is mapped to a.

• Each typed literal l is mapped to IL(l): lI = IL(l)

• Each URI u is mapped to IS(u): uI = IS(u)

This means that untyped literals are mapped to themselves. There are no

strict requirements for the definition of typed literals.

The basic interpretation function is then extended such that a truth value is

assigned to each grounded triple, i.e to each triple which does not contain any

variables:

Definition 7 (Interpretation of Grounded triples) The interpretation of

grounded triples is defined by

s p o.I =

true s, p, o ∈ V ∧ (sI , oI) ∈ IEXT (pI)

false else
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Thus, a grounded triple is true if its elements are in the vocabulary and if

the pair of resources denoted by s and o is in the extension of the property

represented by p. Based on the definition of the truth value of triples, the truth

value of a graph can be determined. The interpretation of a graph returns true,

if and only if the interpretation of all triples within the graph is true.

The last part of the simple interpretation is the interpretation of blank nodes,

i.e. of nodes which are not denoted by a specific label. Basically, a graph

containing blank nodes is true if for each blank node there exists a resource

with which the node can be identified.

Definition 8 (Interpretation of blank nodes) Let A be a function which

associates all blank nodes with a resource from IR. Based on this function and

the interpretation function I +A the combined interpretation I +A is defined:

xI +A =

A(x) if x is a blank node

xI else

The interpretation of the RDF and RDFS vocabularies is then obtained as

an extension of this basic interpretation. In order for an interpretation of the

graph to be an RDF interpretation the basic triples from the RDF vocabulary

(such as rdf:type rdf:type rdf:property) have to be true.

For the RDFS interpretation, an additional set describing the set of classes

and an interpretation function for the class membership is introduced. Addi-

tionally, rules are introduced for the interpretation of the elements of the RDFS

vocabulary (such as rdfs:domain and range). Again, a set of additional triples

is introduced which have to be fulfilled in order for the interpretation to be an

RDFS interpretation.

2.2 SPARQL

For querying RDF data, the W3C standard Simple Protocol and RDF Query

Language (SPARQL) is available (Prud’hommeaux and Seaborne, 15 Jan. 2008).

SPARQL is similar in spirit to SQL for databases, i.e. it allows to query an RDF

knowledge base for data which has certain properties. SPARQL graph patterns

are used in Chapter 7 for defining update patterns.

The key concept of constructing queries in SPARQL is the specification of

graph patterns, i.e. graphs which contain variables as placeholders for node

or edge labels. These graph patterns are then matched on the data graph.

Each possible matching of the graph pattern on the data graph yields a variable

binding. Using these variable bindings it is possible to retrieve data with certain

properties. SPARQL allows to display the retrieved data directly or to construct

new graphs based on it.
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Graph patterns are formed by a set of triples, where triple elements may be

replaced by variables (distinguished by a question mark before the identifier).

Additionally to the query pattern, it has to be specified what should be done

with the results of the query. The most important possibility is to show the

bindings of specific variables in the matchings of the graph pattern (SELECT

query).

Definition 9 (Basic Graph Pattern) A Basic Graph Pattern is a set of triple

patterns.

A triple pattern is an element of the set: (RDF-T∪V )×(R∪V )×(RDF-T∪V )

where R denotes the set of all resources denoted by a URI, RDF-T denotes all

elements of the RDF vocabulary, i.e. the set of named resources, blank nodes

and literals and V a set of variables which is disjoint from RDF-T.

The selection criteria for data are specified using basic graph patterns (this

happens in the where-clause of the query. The basic graph pattern is matched

against the data graph. Hereby, the interest lies in finding those elements which

the defined variables stand for. Thus, each variable may stand for any node in

the graph, the other elements in the graph pattern are matched to nodes having

the same identifier. This graph matching yields a set of variable bindings which

are then used for the result presentation. More complex conditions for the graph

matchings can be specified: it is possible to specify parts which are matched

optionally or to intersect (or union) the sets of variable bindings obtained from

matching different graph patterns.

The other parts of the query specify what should be done with the matches

that are found using the search criteria in the basic graph pattern. There are

several kinds of queries which specify what should be done with the variable

bindings found using the basic graph patterns. Probably the most interesting

kind of queries are select-queries, which simply present the values the variables

in the select-clause may stand for in the graph.

Example 10 (People and Topics cont.) In our example, we query for peo-

ple who are interested in the topic with label “Machine Learning”.

SELECT ?personName

WHERE { ?person foaf:name ?personName.

?person foaf:topic_interest ?topic.

?topic skos:prefLabel "Machine Learning".}

The graph pattern describes a query for entities which have a foaf:name link

to another node in the graph. The subject of the first triple should also have a

link of type foaf:topic_interest to some node which itself has a link of type

skos:prefLabel to the datavalue node with label “Machine Learning”. More

intuitively, the query retrieves the name of people who are interested in a topic
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with label “Machine Learning”. The result of this query is a table containing all

possible bindings of the variable ?personName in matchings of the graph pattern

on the data graph:

?personName

”Uta Lösch”

”Achim Rettinger”

Additional query types are construct, ask and describe queries. The first

type of query allows for the construction of graphs based on templates specified

in the construct clause which are then filled with the variable bindings obtained

in the where clause. The ask query checks whether any match of the where

clause in the data graph exists. Finally, the describe query is used to obtain

descriptions of the selected resources without knowing what a description looks

like. This is useful in cases where the structure of the data set is not or only

partially known and it is not clear which properties of the resources are of

interest.

SPARQL endpoints serve as a means to make (RDF) knowledge bases ac-

cessible to humans and machines.2 Besides the definition of a query language

for RDF, the W3C recommendation for SPARQL also contains the definition

of a protocol for the communication between the SPARQL enpoint and the

machine/human querying the data (Clark et al., 2008).

2.3 SPARQL Update

SPARQL Update (Schenk et al., 2008) is an extension of the SPARQL standard

which allows for updating and changing the data in an RDF knowledge base via

the SPARQL protocol. Similar to the update part of SQL, SPARQL Update

offers functionality for adding and deleting data in a knowledge base as well

as the possibility to change data. The change language proposed in 7 is an

extension and adaptation of SPARQL Update.

The basic operations are insert and delete which allow the direct insertion

or deletion of a set of triples. The set of triples to be changed is specified using

a basic graph pattern (as is used in the where-clause of the SPARQL queries.

It is also possible to specify the set of triples to be changed directly using

the commands insert data resp. delete data. There are two variants of the

delete operation: either a graph pattern is specified based on which triples which

are to be deleted are constructed, or all triples which match the graph pattern

are deleted directly. It is furthermore possible to combine delete and insert

2Note that non-RDF data can also be made accesible through a SPARQL endpoint: the

results obtained for the queries have to be described in the expected format and the obtained

results have to be coherent with the RDF semantics.
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operations in a so-called modify operation, this makes it for example possible

to change properties of certain entities.

Example 11 (Bibliographic Metadata and Topic Hierarchies cont.) To

continue our example, imagine that we would like to add a new group - the

Machine Learning Special Interest Group (ML-SIG). All people interested in

Machine Learning will be members of this group:

insert{ ML-SIG foaf:member ?person.}

where{ ?person foaf:interest ?topic.

?topic skos:prefLabel "Machine Learning".}

This will add the triples ML-SIG foaf:member person100. and ML-SIG foaf:member person200.

to the knowledge base.

Additionally, the creation and deletion of graphs is possible through SPARQL

Update operations.
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Chapter 3

Machine Learning

Machine Learning is concerned with building systems that are able to improve

their performance with experience (Mitchell, 1997). Many different kinds of

problems can be solved using learning systems, e.g. chess playing, movie rec-

ommendation, news categorization, etc.

Formally, Mitchell (1997) defined a learning system as:

Definition 12 (Learning System) A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P ,

if its performance at tasks in T , as measured by P improves with experience E.

Machine learning is a very broad field and only a very limited subset of the

methods which were developed in the Machine Learning community is relevant

for this thesis. All methods developed here contribute to the field of Kernel

Methods. We are particularly interested in kernel methods for graph data.

In the subsequent sections, we will first present some basic Machine Learning

terms. We will then focus on kernel methods and SVMs as the best-known

kernel-based classifiers. The subsequent section 3.3 will deal with mining graph

data (focusing on graph classification) before we conclude with the presentation

of the evaluation methodology for classification models. The interested reader

is referred to (Mitchell, 1997) or (Tan et al., 2006) for additional information

regarding Machine Learning and the most widely used algorithms in this field.

For more information on Kernel Methods you may refer to (Shawe-Taylor and

Christianini, 2004).

3.1 Machine Learning Foundations

Learning systems are based on observations or experiences that improve the sys-

tem performance. These experiences are made available to the machine learning

algorithm as input data.

21
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Each learning problem then requires:

• The choice of a suitable data representation, i.e. a suitable data model

and a suitable description of each element from the input data in the data

model

• The choice of a suitable class of hypotheses H (the model class).

• A method for choosing a specific model function f ∈ H by adjusting the

free parameters of functions within H.

For example, consider a scenario where texts are to be classified into var-

ious topic categories. A possible data representation is vectors with terms as

attributes and TFIDF as feature weights, a class of hypotheses is decision trees

and one of the algorithms that can be used to choose a specific decision tree is

the C4.5 algorithm.

The choice of a suitable data representation is not only influenced by the

problem at hand and the input data which is available, but also by the model

class which is chosen and the algorithms which are available for choosing a spe-

cific model. Most learning algorithms’ input data consists of a vector describing

each experience. Here, we will concentrate on learning based on vectorial input

data; Machine Learning (ML) algorithms for other kinds of input data, espe-

cially graphs, as well as methods for making these alternative kinds of input

data usable for classical ML algorithms will be discussed in Sections 3.3.

An experience in the input data is called instance and is denoted by a vector

containing the value of the data object for each of its attributes. Each instance

can thus be described as a vector xi = (xi1, . . . , xim) and the whole dataset can

be formalized as a matrix D = (x1, . . . , xn)>. The colums in the data matrix

are called attributes or features and are here denoted by a1, . . . , am.

Attributes are distinguished depending on the values which they can take:

Nominal attributes are attributes which can only be tested for equality, while

for numeric attributes an order on the values can be established and values can

be compared. A typical nominal attribute is an attribute denoting a colour, a

typical example for a numeric attribute is the age of a person.

Learning problems are generally divided in two classes: supervised learning

problems and unsupervised learning problems. In the following, the two problem

classes will be introduced.

3.1.1 Supervised Learning

Supervised learning is used for solving so-called prediction tasks. In these tasks,

each instance consists of two parts: a target value yi and the input instances xi

which are defined by input values xij . The learning problem then consists in

finding a function f , such that (in the ideal case) f(xi) = yi for all instances.
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The two main problems within this class are classification (also known as cat-

egorization) and regression. The difference between the two problem classes is

that in the case of regression the predicted variable yi is a numerical variable

and in categorization problems it is a nominal variable.

3.1.2 Unsupervised Learning

Unsupervised learning problems consist in finding patterns in the data that are

not known a priori. The problems within this class can thus be formulated as

the search for a function f(x1, . . . , xn) whose desired function values yi are not

known a priori. The most prominent example of this class of learning problems

is clustering. The clustering problem consists in partitioning the available data

into groups containing similar instances. The objective is thus to find clusters

within the data such that the similarity between instances in the same cluster

is high and the similarity between objects of different clusters is low.

3.2 Kernel methods

Kernel methods are one of the most prominent paradigms in modern machine

learning research. The core idea of this class of methods is the decoupling of

the employed learning algorithms from the representations of the data instances

under investigation. Using this paradigm it is possible to use the same learning

algorithm for various kind of data, such as vectors, text or graphs. On the

other hand, a set of learning algorithms may be applied to one kind of data

representation.

The methods for learning from RDF data which will be proposed in Chap-

ters 5 and 6 contribute to the area of kernel methods by proposing data repre-

sentations which allow to apply kernel methods to RDF data.

The core of kernel methods, the so-called “Kernel Trick” is depicted in

Fig. 3.1. The data is mapped into some feature space in which the learning

problem can be solved. This model which is learnt in the feature space can then

be used as a model in the data space. The interesting thing about the feature

mapping is that in many algorithms it is not necessary to access the elements of

the feature space, but it is sufficient to access the dot product between elements

of the feature space. This means that the representation of the data within

the feature space need not be calculated explicitely, but can be used implicitely

within the dot product. This also enables the handling of feature spaces with

an infinite number of dimensions. A more formal definition of kernel functions

will be given in Section 3.2.1.

It can be shown that the optimal solution in kernel machines always admits

a representation of the form: f(x) = g(〈x, xi〉), i.e. the solution can be obtained

through calculating the dot product with the training instances xi. It is thus
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Figure 3.1: Illustration of kernel methods

sufficient that the kernel machine is able to access the evaluations of the inner

product 〈x, xi〉 of two vectors x, xi.

As a consequence, it is possible to replace the inner products 〈·, ·〉 in the un-

kernelized algorithms by any valid kernel function which yields the same result

as the inner product but can be computed without the explicit representation

of the training instances as vectors in the feature space. Thus, kernel machines

implicitly mimic the geometry of the feature space by means of the kernel func-

tion, a similarity function which maintains a geometric interpretation as the

inner product of two vectors in some – potentially unknown – feature space.

While SVMs (Vapnik et al., 1997) for classification and regression can safely

be regarded as the best known kernel machine, many other well-known super-

vised and unsupervised machine learning algorithms (e.g. Kernel-kMeans and

Kernel-PCA (Schölkopf et al., 1996) for clustering and dimensionality reduc-

tion) can be “kernelized” as well. Kernel-based machine learning algorithms

abandon the explicit representation of data items in the vector space in which

the sought-after patterns are to be detected.

In the following a formal definition of kernel functions will be given and the

most important properties will be presented.

3.2.1 Kernel functions

Kernel functions are used to represent data in a form that makes them suitable

for their use in kernel machines.

Definition 13 (Kernel Function) Any function κ : X × X → R on some

objects x, x′ from some input domain X that satisfies

κ(x, x′) = 〈φ(x), φ(x′)〉,
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is a valid kernel, whereby φ is a mapping function (feature representation) from

X to a feature space F :

φ : x→ φ(x) ∈ F

Intuitively, kernel functions can probably be described best as functions that

encode a particular notion of similarity while implicitely maintaining a geometric

interpretation. Technically, the set of valid kernel functions exactly corresponds

to the set of so-called positive semi-definite functions (Shawe-Taylor and Chris-

tianini, 2004).

Definition 14 (Positive Semi-definite Function) Given a set X and a func-

tion κ : X × X → R, then the function κ is called positive semi-definite if it is

symmetric and if for all n ∈ N and x1, . . . , xn ∈ X , the matrix K := (κ(xi, xj)i,j

is positive semi-definite.

A symmetric matrix M is called positive semi-definite if and only if for any

vector x 6= 0, we have x>Mx ≥ 0.

The equivalence of positive semi-definite functions and dot products in vector

spaces is given by Mercer’s theorem.

Theorem 15 (Mercer’s Theorem) A kernel function κ can be expressed as

κ(u, v) = 〈u, v〉

if and only if, for any function g(x) sucht that
∫
g(x)2dx is finite, then∫

κ(x, y)g(x)g(y)dxdy ≥ 0

To show that a function is a kernel function, it is thus either necessary to

construct a feature space in which the defined function is the dot product or to

show that the defined function is positive semi-definite. A third possibility is

to show that the newly defined kernel function can be obtained from functions

that are known to be valid kernels using operations under which the space of

kernel functions is closed.

Proposition 16 (Closure Properties) Given two kernel functions κ1 and κ2

defined over X × X, λ ∈ R+, the following functions are also valid kernel

functions:

κ(x, y) = κ1(x, y) + κ2(x, y) (3.1)

κ(x, y) = λκ1(x, y) (3.2)

κ(x, y) = κ1(x, y)κ2(x, y) (3.3)

κ(x, y) = κ1(x, y)/
√
κ1(x, x)κ1(y, y) (3.4)



26 CHAPTER 3. MACHINE LEARNING

The set of kernel functions is thus closed under sum and product, as well as

multiplication with a scalar. The last equation presents a so-called kernel nor-

malization which enables to normalize kernel values to the interval [0, 1].

Proofs for the presented kernel closure properties and kernel modifiers are

for example given by Shawe-Taylor and Christianini (2004).

In general, the use of kernel functions is advantageous in those cases, where

the kernel function has better storage or computation requirements than the

corresponding explicit feature representation. It is even possible to construct

kernel functions corresponding to a feature space with an infinite number of

dimensions.

Two well-known kernel functions for vector data are the polynomial kernel

and the Gaussian kernel:

Definition 17 (Polynomial Kernel) The Polynomial Kernel of degree p is

defined as:

κpolynomial(x, y) = (κ(x, y) + c)p, c, p ∈ R+; (3.5)

Definition 18 (Gaussian Kernel) The Gaussian Kernel is given by:

κgaussian(x, y) = exp

(
−κ(x, x)− 2κ(x, y) + κ(y, y)

2σ2

)
, σ ∈ R+. (3.6)

Note that the Gaussian Kernel is an example of a kernel whose (implicit)

dimensionality is infinite.

A third frequently used kernel function, which is also the most trivial one, the

standard dot product in the current feature space, is known as the Linear kernel.

The feature mapping implicitely mimiced by the Linear Kernel is φ(x) = x.

Kernel functions may also be defined on other data which is a priori not

representable in the form of vectors. The kernel function then maps this data

into a vector space and calculates the dot product there. Examples of other

data where the representation as vector data is not directly available are graph

structures or texts.

3.2.2 Support Vector Machines

The focus of this thesis lies on the application of kernel methods for classification,

namely in Support Vector Machines (SVMs). We will therefore not detail on

other kernel machines here (the interested reader is referred to (Shawe-Taylor

and Christianini, 2004) for an overview of other kernel machines), but will focus

on SVMs here. The SVM is an extension of the basic linear classifier; we will

therefore start with presenting this classification model before presenting hard-

margin and soft-margin SVMs.
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Algorithm 1: Perceptron training

Input: Data S = ((x1, y1), . . . , (xm, ym) with m instances; Learning rate

α

Result: Weight vector w; bias term b

1 w ← 0

2 b← 0

3 repeat

4 err ← 0

5 for i = 1, . . .m do

6 compute f(xi) = sign(< w, xi > +b)

7 if f(xi) 6= yi) then

8 w ← w + αyixi

9 b← b+ αyi

10 err ← err + 1

11 end

12 end

13 until err = 0;

Linear classification

The linear classifier is one of the most basic classification models. A classification

model in the class of linear classifiers is represented by a hyperplane in the input

space, where each instance is classified according to its position with respect to

the hyperplane. The problem to solve thus is, given a data matrix X with

features a1, . . . , am and classes c1 and c2, find a hyperplane described by its

normal vector w and the bias term b such that

f(x) =< w, x > +b

≥ 0 if x ∈ c1
< 0 if x ∈ c2

This means that a hyperplane is searched which separates the data: objects of

class c1 are on one side of the separating hyperplane, objects of class c2 on the

other.

First applications of linear classification have been studied by Fisher (1936).

The first algorithm for learning linear classifiers, the perceptron learning algo-

rithm was however only developed in the 1950s (Rosenblatt, 1958). The per-

ceptron training algorithm searches a separating hyperplane given some input

data (see Algorithm 1). The algorithm converges to a valid solution if the data

is linearly separable.

Definition 19 (Linear separability) Two sets of points S1 and S2 in an n-

dimensional vector space are called linear separable if there exists a hyperplane
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in this space, such that the points of S1 are on one side of the hyperplane, the

points of S2 on the other.

Note that if there exists a separating hyperplane, it will be found by the

perceptron algorithm. However, the algorithm has no preference with respect

to different separating hyperplanes. Support Vector Machines are an alterna-

tive way of learning linear classifiers. They learn separating hyperplanes with a

maximum distance to the training data. Using the soft-margin version of Sup-

port Vector Machines and kernel functions, it is also possible to learn classifiers

for data which are not linearly separable.

Support Vector Machine

Support Vector Machines (SVMs) present a set of classification models that

has received considerable interest over the last years. This success is due to the

remarkable results they achieved on various classification problems, especially on

high-dimensional data. They are based on the idea of linear classifiers. Instead

of finding any separating hyperplane, SVM finds the separating hyperplane with

the maximum margin, i.e. with the maximum minimum distance between a

training example and the separating hyperplane. The theory of SVMs was

first developed by Boser et al. (1992) and refined by Vapnik (1995). A more

comprehensible introduction to the subject is offered in Cristianini and Shawe-

Taylor (2000).

Definition 20 (Margin) The functional margin γ of a hyperplane (w, b) with

respect to a data point (xi, yi) is defined as the quantity

γi = yi < w, xi > +b

The geometric margin is obtained by rescaling w and b. It then represents the

Euclidean distance of xi from the hyperplane:

γi = yi <
1

||w||
w, xi > +

1

||w||
b

The rationale behind choosing the hyperplane with maximal margin is that

classifiers with large margin tend to generalize better than classifiers with a

small margin.

Definition 21 (Hard-margin SVM) Hard-margin SVMs are linear classi-

fiers based on the maximum margin hyperplane. In the case of linear separable

data, this hyperplane can be found as solution of the constrained optimization

problem:

min
w

||w||2

2

subject to yi(< w, xi > +b) ≥ 1, i = 1, . . . , n
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As the objective function is quadratic and the constraints are linear in the

parameters w and b, the optimization problem is known to be convex and can

thus be solved using Lagrangian multipliers. After reformulation the dual opti-

mization problem is obtained:

Definition 22 (Hard-margin SVM - Dual Optimization Problem)

max
α

l∑
i=1

αi − 0.5

l∑
i,j=1

αiαjyiyj < xi, xj >

subject to

l∑
i=1

yiαi = 0, 0 ≤ αi∀i

It turns out that in the solution most Lagrange multipliers αi are equal to

zero. In fact, if αi 6= 0, the training instance xi’s distance to the separating

hyperplane equals the geometric margin. The training instances for which this

is the case are called support vectors. This situation is illustrated in Figure 3.2.

Note that no solution can be found for the Hard-margin SVM in the case

of data which is not linearly separable. The support vector machine as de-

fined above can be extended to be able to deal with data which is not linearly

separable. The idea is to relax the margin criterion and to allow data to be

wrongly classified. These wrong classifications are associated with a cost which

is proportional to its distance from the separating hyperplane. This approach

is called Soft-margin SVM.

Definition 23 (Soft-margin SVM) Soft-margin SVMs are an extension of

hard-margin SVMs which are able to deal with data which is not linearly sep-

arable. It searches the hyperplane minimizing a cost function which penalizes

wrong classifications. Given some training data X = (x1, . . . , xn), the optimiza-

tion problem for the soft-margin SVM is defined as:

min
w,b,ξ

0.5||w||2 + C

l∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi
ξi ≥ 0

In this problem, the ξi are so-called slack variables which are proportional to

the distance of a misclassified example from its corresponding margin.

The choice of the cost factor C is crucial in soft-margin SVM as it determines

the trade-off between a large margin and the number of misclassified instances.

Choosing a large C makes the misclassification of instances expensive, while a

small C leads to more tolerance towards misclassified instances.
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Figure 3.2: Separating hyperplane in the case of hard margin SVMs (left side)

and in the case of soft-margin SVMs (right side). In the case of hard-margin

SVM, the hyperplane which maximizes the margin is denoted by a solid line, the

lines which fix the margin are shown as dotted lines, the points on the margin

are the support vectors. In the case of the soft-margin SVM, some points lie on

the wrong side of the separating hyperplane.

Definition 24 (Soft-margin SVM - Dual Optimization Problem) The dual

version of the optimization problem is obtained as:

max
α

l∑
i=1

αi − 0.5

l∑
i,j=1

αiαjyiyj〈xi, xj〉

subject to

l∑
i=1

yiαi = 0, 0 ≤ αi ≤ C∀i

ξi ≥ 0

In practice, the optimal choice of the parameter C is very important as

it heavily influences the obtained results. However, the interval from which

the values for C may be chosen is very large and no approach for identifying

good C-values is available. Schölkopf et al. (2000) have proposed an alternative

formulation of the SVM learning problem which replaces the parameter C with

a new parameter ν which has a clearer interpretation:

Definition 25 (ν-SVM) The optimization problem of the ν-SVM is defined
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as:

max
α
− 0.5

l∑
i,j=1

αiαjyiyj〈xi, xj〉

subject to 0 ≤ αi ≤ 1/l

l∑
i=1

αiyi = 0

l∑
i=1

αi ≥ ν

The newly introduced parameter ν takes values between 0 and 1 and has a

clearer interpretation as C: Schölkopf et al. (2000) have shown that

• ν is an upper bound on the fraction of margin errors, i.e. on the frac-

tion of instances which are wrongly classified or whose distance to the

classification border is smaller than the margin of the classifier.

• ν is a lower bound on the fraction of support vectors.

This means that ν allows for the direct control of the model complexity.

3.3 Learning from Graphs

So far we have focused on methods for mining vectorial data. However, Semantic

Web data is not intuitively representable as vectors. Instead, at least in the

case of RDF, an intuitive representation in the form of graphs is available. The

methods presented in Chapter 5 and 6 use a graph representation of RDF data.t

Graphs are a means to represent all kinds of elements and relations between

them. Typical examples of data that is represented in the form of graphs are

social networks and chemical compounds. In this section we will introduce

the basics of graph theory and we will give an overview of graph classification

algorithms. For a more complete overview of graph mining algorithms also for

other problems, the interested reader is refered to (Martino and Sperduti, 2010).

The problem which has probably been studied most extensively in the con-

text of graphs, is mining of (approximate) frequent graph patterns. The task

is to find a set of subgraphs within a single graph or a set of graphs, which

occur frequently. However, in the context of this work, we will focus on another

problem: classification with graphs as input data.

In the following sections, we will first introduce some basic concepts from

graph theory and in a second step, we will present approaches for graph classi-

fication.
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3.3.1 Basic Graph Theory

The instances in graph mining are represented by graphs. In the following, we

will introduce the definitions of graphs and graph structures which are relevant

for the remainder of this thesis. A more in-depth introduction is presented by

Goos (2000).

Definition 26 (Graph) A directed graph G = (V,E) is definded by a set of

nodes (also called vertices) V and a relation E ⊆ V × V . The elements of E

are called edges.

If E is symmetric, G is called undirected.

Graph mining is based on finding and counting specific patterns within

graphs. The most important structural patterns are walks, cycles and paths.

Definition 27 (Walk, Cycle, Path) A sequence (e0, e1, . . . , en) of edges

ei = (vi, vi+1) ∈ E, i = 0, . . . , n− 1 is called walk of length n ≥ 0.

A walk of length n ≥ 1 is called a cycle, if v0 = vn and if ei 6= ej , 1 ≤ i, j ≤ n.

A cycle is called Eulerian, if it contains each element of E exactly once. A cycle

is called Hamiltonian, if it contains each element of V exactly once. A graph is

called acyclic, if it does not contain any cycles.

A walk that does not contain any cycles, is called a path.

Trees are specific kinds of graphs which are defined based on their structural

elements. They are a class of graphs that can often be handled much more effi-

ciently than general graphs. Therefore, it is often interesting to reduce general

graph structures in such a way that trees are obtained.

Definition 28 (Tree) An undirected tree is an acyclic graph, in which there

is exactly one walk between each pair of nodes. In undirected trees the number

of nodes is obtained as |V | = |E|+ 1.

A directed tree is an acyclic graph in which the number of incoming edges

of each node is smaller or equal to 1 for all nodes and equal to 0 for exactly one

of the nodes, the so-called root node.

In ML, similarity measures and equality of elements are very important.

However, there is no direct notion of equality on graphs, as nodes are in general

not identifiable. It is only possible to identify nodes which have the same labels

and the same neighborhood. Two graphs are equivalent, i.e. they have the same

structure, if there is an isomorphism between the two graphs:

Definition 29 (Graph isomorphism) A graph morphism is a function f :

G1 → G2 which maps from one graph G1 = (V1, E1) to another graph G2 =

(V2, E2), i.e. f(v) ∈ V2∀v ∈ V1 and (f(v1), f(v2)) ∈ E2 ⇔ (v1, v2) ∈ E1. Two

graphs G1,G2 are called isomorphic, if there exists a bijection between the two

graphs, i.e. a morphism of G1 into G2 and vice versa.
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The problem of deciding whether two graphs are isomorphic is known to be in

NP, no polynomial testing procedure is known (although NP-completeness has

not been shown either). In the context of mining graphs isomorphism checking

is therefore to be avoided.

Research on graph mining can be distinguished in two classes: either the

learning problem works on a set of graphs (i.e. each instance is a graph) or the

learning problem deals with subgraphs of a single graph. The problems we are

concerned with are part of the first class. For an overview of the second class

the interested reader is refered to (Chakrabarti and Faloutsos, 2006).

3.3.2 Graph classification

A graph classification problem is a classification problem, where the input data

is described by graphs. Given some input data (x1, y1), . . . , (xn, yn) where the

xi are graphs and the yi values of a class variable, the problem consists in finding

a function f such that f(xi) = yi.

In general, graph classification uses the same learning algorithms as proposed

in vectorial data mining. Especially kernel methods have received considerable

interest when dealing with graphs due to their decoupling of the learning al-

gorithm from the data description. Given a suitable kernel function, kernel

machines are able to deal with graph data. The advantage of kernel machines

over other learning algorithms in this context is that there is no need for ex-

plicitely representing the features of the feature space and therefore potentially

very high-dimensional feature spaces may be defined.

The challenge in any graph classification problem consists in finding suitable

features to describe properties of the graph and fast algorithms for calculating

the instance representation in the feature space resp. the value of the corre-

sponding kernel function. Note that in the case of kernel methods the represen-

tation in the feature space is not made explicit. However, the input graph is

mapped to a feature space implicitely in this case.

In the following, we will give an overview of the structures that have been

used as features in graph classification.

(Connected) Subgraphs

Shervashidze et al. (2009) have proposed the use of small connected subgraphs

with 3 to 5 nodes as features. The idea is that a graph is best described by

its subgraphs. While checking whether a graph contains a specific subgraph is

expensive, the decomposition of graphs into its subgraphs of a specific size can be

done more efficiently and isomorphism checking is feasible for small graphs. The

kernel then works by determining for any pair of graphlets of size k ∈ {3, 4, 5}
whether they are isomorphic.
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Trees

Shervashidze and Borgwardt (2009) have proposed to use neighborhood trees,

i.e. the neighborhoods up to k hops from each node as features. They have

proposed an efficient algorithm for calculating the kernel function based on this

feature mapping: starting from trees with one node, an iterative algorithm

expands the size of the trees up to the maximum depth by encoding the neigh-

borhood of each node into the node in each step. Each distinct node label then

represents one feature.

Horváth et al. (2004) use tree patterns as one part of their cyclic pattern

kernel which will be explained below.

Costa and Grave (2010) have proposed to use pairs of identical trees with

depth r and distance d between the trees in the graph as features. The kernel

function based on the feature mapping counts all such pairs of trees up to some

maximum depth r and some maximum distance d.

In tree mining, tree structures are also often used as features. The idea is

that trees are best described by their subtrees. This kind of approach has for

example been proposed by Vishwanathan and Smola (2003). Moschitti (2006)

has studied subtree kernels for dependency and syntactic trees. The specific

problem of this kind of trees is that the order of the leaves is fixed. The author

has proposed efficient methods for calculating kernels based on subtrees as well

as partial subtrees as features.

Walks, Paths and Cycles

The first graph kernels were based on graphs and walks as features: Gärtner

et al. (2003) have proposed to use the set of walks up to infinite length in the

graph as feature space. They show that the common walks can be obtained as

the limit of a power series of the product graph’s adjacency matrix. However,

calculating this limit involves inverting the adjacency matrix which makes the

calculation expensive for large graphs. It has been noted that these random walk

kernels suffer from tottering, meaning that very small common substructures can

lead to high similarity values. This is especially the case for cycles of nodes that

are visited again and again.

Borgwardt and Kriegel (2005) have proposed a feature space which consists

of pairs of nodes and the length of the shortest paths between them in the

graph. The kernel they propose works on graphs which have the same nodes as

the input graph, but which contain an edge between two nodes if there exists a

walk from the source to the target node of the edge. The edges are labeled with

the length of the shortest path from source to target. The kernel then compares

all pairs of edges using any valid kernel for walks of length 1.

The use of cycles as features has been proposed by Horváth et al. (2004).

The feature space they propose consists of all cycles that are found in the set of
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graphs under consideration. However, the authors find that information on cy-

cles is not sufficient as only type of structure inducing similarity between graphs.

Therefore, tree patterns are used as additional features: all edges belonging to

a cycle in the graph are deleted from the graph. As result a forest (a graph con-

sisting of one or several trees) containing all bridges in the graph is obtained.

Any tree pattern found in this forest is used as additional feature in the kernel.

Frequent subgraphs

Another approach for defining interesting features consists in searching for fre-

quent subgraphs within the set of graphs, which are then used as features in the

learning task. As stated above, finding frequent subgraphs is a problem which

has been studied extensively in the literature. The methods developed in this

line of research can then be used for finding features for classification. This ap-

proach has for example been used by Kudo et al. (2004): They use gSpan (Yan

and Han, 2002) for finding frequent subgraphs and use these as basis for decision

stumps which are then combined in a boosting approach to learn a classifier.

Deshpande et al. (2005) have used a similar approach in the context of

chemical compounds: the features they propose are based on searching frequent

topological and geometric patterns in a set of compounds which are then used

as features for classification.

Domain-specific features

While the previously presented approaches use specific structures in the graph

as features, there are also approaches to use specific domain-dependent features

for graph mining. For example, Bloehdorn and Sure (2007) have defined kernels

that work specifically on semantic data. The instances in their kernel functions

are instances (i.e. specific nodes in the underlying graph). However, their kernels

are not directly defined on the graph structures underlying the data but on the

semantic level. For example, they have defined kernels based on the identity

of two instances, on the classes the instances share, on the data properties the

instances share and so on. Besides the identity kernel these kernels could also

be defined on the graph obtained after materializing the ontology. For example,

the common class kernel uses links labeled with the type relation as features.

In a different context, Fröhlich et al. (2005) propose to define kernels for

comparing atoms within molecules. They propose to use the role of the atom

as well as structural features, such as whether an atom is part of a cycle as

features. Their contribution then consists in defining a kernel which allows for

the integration of the information available for each atom into a kernel for whole

molecules.
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Chapter 4

Ontology Change

Ontologies are hard to develop as they do not only require a lot of domain

knowledge but also require the knowledge of how the available domain knowledge

can best be described in a specific formalism. There are many methods that

aim at helping the domain expert formalize all the knowledge that is necessary

to get a complete description of the domain, that help detect problems (e.g.

inconsistencies) in the ontology and that help the ontology engineer to adapt

the ontology to changes in the requirements and the modeled domain. The

goal of these methods is to improve the quality of the resulting ontology and to

facilitate the task of the ontology engineer. All described activities are subsumed

by the term Ontology Change.

Definition 30 (Ontology Change) Ontology Change refers to the problem of

deciding the modifications to perform upon an ontology in response to a certain

need for change.

According to this definition any change to an ontology is covered by the term

Ontology Change. The change in the ontology is triggered by the detection of

a need for changing the ontology (this need may stem from various sources, see

Section 4.1.1 for more details) and is concerned with acquiring the additional

knowledge which is needed for implementing the change and integrate the new

knowledge in the ontology (see Section 4.1.2 for more details). The concrete

changes are then performed on the formal specification by e.g. adding, removing

or changing the definition of concepts, relations or properties or by adding,

removing or changing the description of a concrete instance in the ontology.

The definition of Ontology Change thus goes beyond the mere application of

a set of changes to the ontology at hand, it also covers the process of defining

the set of changes to perform, i.e. to decide which information in the ontology

should be changed in order to adapt the ontology according to the need for

change which has been detected.

39
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Dimension Values

Reason of Change

Ontology Refinement

Ontology Evolution

Ontology Update

Change phase

Problem Detection

Knowledge Acquisition

Knowledge Integration

Table 4.1: Overview of the classification schema for Ontology Change methods

Flouris et al. (2008) give a broader definition of the term: they consider that

the implementation of the changes made to the ontology in dependent applica-

tions and services is also part of the change process. According to this definition,

Ontology Change is not only concerned with the change of the ontology itself

but also with the adaptation of systems in which an ontology is used to the new

version of the ontology. This thesis focuses however on supporting changes to

the ontology itself and does not take the change of dependent applications into

account.

The remainder of this chapter is structured as follows: Section 4.1 presents

a classification of problems in the context of changing an ontology. Section 4.2

gives an overview of existing approaches to support ontology change tasks and

Section 4.3 discusses the existing approaches, identifies shortcomings and moti-

vates our contributions from them.

4.1 Dimensions of Ontology Change

In the following, we will define a classification schema for methods which support

ontology changes: the dimensions in this schema are the reason for changing the

ontology and the phase in the change process which is supported. An overview

of the proposed classification schema is given in Table 4.1.

4.1.1 Reason of Change

The first dimension of an ontology change is the motivation for changing the

ontology. Ontologies may be changed because they are still in the process of

being created, because their requirements have changed, because the domain

they model has changed or because some problem within the ontology itself

have occurred.

We distinguish three reasons for changing an ontology:

• Ontology Refinement deals with obtaining additional information which

should be part of the ontology and to integrate it. The goal is to obtain a
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more complete and more fine-grained ontology (Sure et al., 2002).

• Ontology Evolution addresses changes in the ontology due to changing

requirements. With the use of an ontology, the focus of its application

may change or additional scenarios may be addressed. Ontology Evolu-

tion deals with adapting the ontology to these changes in requirements

(Stojanovic, 2004).

• Ontology Update adapts the ontology to changes in the domain itself. This

means that neither the requirements have changed nor the application, but

the domain itself (Katsuno and Mendelzon, 1992; Lösch et al., 2009).

The changes issued by each of these change scenarios may be similar, how-

ever the reason for which the ontology was changed is different. Consider the

introduction of a new class EU-country into an ontology. If the concept is added

because it was missing in the ontology, although it was needed in the applica-

tion, then the change is a case of Ontology Refinement. The concept may also

be added because in the original version of the ontology only countries in gen-

eral were modeled and now the ontology is also used for an application where

it is important to distinguish between the countries belonging to the European

Union and those that don’t. This means that the requirements for the ontology

have changed and the change is a case of Ontology Evolution. The third reason

for which the concept EU-country may be added to the ontology is because the

European Union has not existed before. In this case the change occurs becaus

the underlying domain has changed and we are dealing with a case of Ontology

Update.

Note that the distinction between these scenarios is frequently not made in

the literature. While e.g. the terms Ontology Evolution or Ontology Update are

often used in the literature, the clear distinction between the three scenarios de-

scribed above is usually not made. E.g., while Flouris et al. (2008) come up with

a set of tasks that have to be dealt with in the context of Ontology Change, they

subsume any activity which is related to changing an ontology itself under the

term Ontology Evolution. However, each of the scenarios described above yields

different requirements with respect to the approaches developed for supporting

them. We therefore think that they should be distinguished conceptually.

4.1.2 Ontology Change Process

The second dimension according to which methods for supporting ontology

change may be classified is the task in the change process they address.

There are three main phases of Ontology Change which form a cycle for

continuous Ontology Change (see Figure 4.1). These three tasks are Problem

Detection, Knowledge Acquisition and Knowledge Integration.
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Figure 4.1: The Ontology Change Cycle

• In the Monitoring and Problem Detection phase, the ontology and the

domain are observed. When the need for updating, completing or correct-

ing information in the ontology is detected, the change process may be

triggered.

• In the Knowledge Acquisition new knowledge is acquired. The source of

this new knowledge may be the ontology itself, it may be extracted from

external data, or it may be obtained from the domain engineer.

• Finally, the obtained knowledge is integrated in the ontology in the Knowl-

edge Integration phase. The new knowledge may be inaccurate or it may

contradict knowledge which is currently modelled in the ontology. Thus,

decisions with respect to which parts of the ontology should effectively be

changed are necessary. The result of this phase is a consistent and coher-

ent ontology incorporating a solution to the problem which initiated the

change. Consistent here refers to logical consistence, coherence refers to

the fact, that no unintended knowledge should be part of the ontology.

These phases are independent of the motivation for changing the ontology.

However, different actions may be required in each of the phases and different

data may be analysed. For example, the need for refining the ontology can be

detected by analysing the ontology and related requirements while the need for

an update is detected from the combination of the ontology and the underlying

domain. The detection of a problem triggers the change cycle in which new

knowledge is acquired and added to the ontology. Again, in these two phases the

methods employed may depend on the reason of the change and the additional

data which is available.
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Figure 4.2: Classification of some research fields with respect to their coverage

of Ontology Change

4.2 Existing change support methods

There has been a lot of work on supporting changes in an ontology and whole

fields of research are addressing specific issues arising from the different kinds of

changes that occur in an ontology. For example, the fields of Ontology Learning

and Ontology Mining address the problem of Knowledge Acquisition in Ontology

Refinement. An overview of relevant directions of research and their position

with respect to the ontology change process and reason of change is given in

Figure 4.2.

These fields of research, which will be presented in more detail in the follow-

ing, are:

• Ontology Completion, which deals with the acquisition and integration

of additional knowledge into the ontology with the goal of obtaining a

complete axiomatization of the domain,

• Ontology Mining which is concerned with analysing the current ontology

and inducing additional knowledge which may be used for extending the

ontology,

• Ontology Learning which uses the results of analysing external - textual

- documents in order to obtain a more concise and stronger axiomatised

description of concepts in the ontology.
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• Ontology Revision which is concerned with the integration of new knowl-

edge into an ontology while keeping some of the ontologies’ properties, e.g.

its consistency,

• Ontology Amendment which is concerned with automatically acquiring

new axioms in order to adapt the ontology to new use cases, and

• Ontology Reduction whose aim is to reduce the ontology’s size during the

evolution process, e.g. by eliminating knowledge which is infrequently

used.

In the following we will discuss each of these directions of research in more

detail and present the main ideas that have been proposed to address the issues

raised in the specific fields.

4.2.1 Ontology Completion

The field of Ontology Completion is focussing on methods for determining miss-

ing information in the ontology and to help domain experts create a complete

representation of the domain. One motivation is that domain experts often

struggle to add all the information that is necessary to obtain unambiguous and

complete domain descriptions. To help the developer in this process, methods

for detecting missing information and for amending the missing parts in the

ontology have been developed.

The most important line of research is the adaptation of Formal Concept

Analysis (FCA) for ontology languages. There, an interactive process for ex-

ploring the domain of interest is proposed where any statement which can be

deduced from the ontology is validated resp. rejected automatically. The user

is asked for the correct answer in cases where no decision can be made auto-

matically.

Formal Concept Analysis (FCA) (Ganter and Wille, 1999) deals with finding

implications in so-called formal concepts, i.e. relations describing the member-

ships of given objects in given concepts. Given a partial description of the do-

main of interest, FCA helps in acquiring a complete description of this domain,

i.e. knowledge about any implication holding between concepts.

Traditionally, FCA deals with closed worlds, i.e. with the case where a fact

can either hold or not hold, there is no unknown state. However, the method

has been adapted for the use with Description Logic (DL) ontologies with an

open-world semantics, i.e. where the absence of a statement does not mean that

it does not hold (Rudolph, 2006; Baader et al., 2007). This is achieved by trying

to decide for any unknown implication whether it holds or can be refuted using

a reasoner. If no answer can be obtained from the reasoner, the user is asked to

add some information which allows to accept or refute the implication.
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The basic approach was refined in Sertkaya (2009). Usability issues in the

approach were addresed and the possibilities of taking back some decisions and

postponing specific questions were added. Relational exploration extends the

ideas from the learning of hierarchies for simple concepts to the case of General

Concept Inclusions, i.e. to the case where not only atomic concepts have to be

dealt with but also complex concept descriptions like intersections or unions of

concepts (Rudolph, 2006).

This class of approaches thus relies on deductive approaches and the in-

teraction with a user. However, additional information may be obtained using

inductive methods which allow to infer additional knowledge and thus take more

burden from the user, as they give indications with respect to the truth values

of certain statements or because they propose examples which may be used for

contradicting certain statements. This kind of approach has been proposed e.g.

by Völker and Rudolph (2008). This kind of integration with the analysis of

external data will be discussed in Section 4.2.3.

4.2.2 Ontology Mining

Ontology Mining deals with the analysis of ontology data with inductive means

in order to obtain new information which is not yet present in the ontology. Two

classes of approaches may be distinguished in the field: one class of methods

is based on Inductive Logic Programming (ILP) and tries to identify logical

formula covering specific sets of instances, and the second class uses statistical

learning methods to derive models for problems like link prediction.

A principled method for integrating data mining models with RDF data has

been proposed by Kiefer et al. (2008). They have proposed a framework which

allows for the definition, induction and scoring of data mining models within

the SPARQL query language. New language constructs are introduced into

the SPARQL language for this purpose. They do not propose specific mining

algorithms but only a general approach how the models constructed using any

learning algorithm may be integrated into a SPARQL endpoint.

Learning based on Inductive Logic Programming

The ILP approach is based on the analysis of the extension of some concept to be

described (i.e. the list of instances) and in finding intensional descriptions, i.e.

logical formulae, describing the same set of instances in the given knowledge

base (Muggleton and de Raedt, 1994). This means that the learned concept

description should cover all the instances in the instance set, but no instance

which is not part of the predefined set. The problem is also known as Concept

learning. Note that in order to derive descriptions which hold in general and

not just in the given state of the knowledge base, examples for all relevant
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phenomena have to be present in the knowledge base.

The general approach for learning concept descriptions consists in generating

candidate descriptions which can then be evaluated using a standard reasoner.

In order to obtain results in an efficient manner, the possible concept descrip-

tions have to be ordered in a way such that the generated candidate descriptions

are promising ones and such that the search space can be pruned efficiently.

To generate candidates, Lehmann (2007) propose the use of genetic program-

ming for candidate generation. Candidates are evaluated using a fitness mea-

sure which expresses how well a concept description covers the set of instances

of interest. However, the standard operators used in genetic programming are

problematic in the case of learning concept descriptions as the crossover oper-

ator tends to be too destructive, i.e. the newly generated solution is too far

from the original solution and thus the new solution is usually worse than the

original one. Therefore, new refinement operators are introduced which allow

the generalisation as well the specialisation of a concept description (Lehmann,

2007). Lehmann and Hitzler (2007) have defined a refinement operator for the

Description Logic ALC which is optimal in the sense that it has as many of the

properties desired in a refinement operator as possible.

The efficiency of the learning heavily depends on the choice of a suitable DL

fragment which is expressive enough to obtain the searched concept description

while being efficient with respect to the reasoning necessary to check the quality

of a candidate concept description Hellmann et al. (2009). To process large

knowledge bases, it may also be desirable to only use fragments of the original

knowledge in the learning Hellmann et al. (2009).

Lehmann (2009) provides a framework for and an implementation of ILP-

based learning methods which implements many of the methods for ontology

mining described so far.

An approach to use ontologies in Relational Learning using ILP has been

proposed by Lisi and Esposito (2008). Their approach relies on the integration

of ontologies with disjunctive DATALOG and define an algorithm which learns

horn rules in this formalism based on the available extensional knowledge.

Cimiano et al. (2010) define an approach for finding intensional answers to

answer queries to an ontology. The idea is to find a concept description which

covers exactly those instances which are returned as answer to the posed query.

Starting with formulae describing the single answers, the approach consists in

a stepwise generalization of the description, resulting in a concept description

which covers all the returned answers. While the approach is originally proposed

as a way to better describe query answers, it may also be used for ontology

refinement, as the descriptions which were found using the approach, may also

be added to the ontology.

The general problem of ILP-based approaches is however that they require
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that the model which is sought, e.g. the concept to be described may be ex-

pressed in the given ontology. If the existing concepts are too general to describe

the concept to be learnt, no solution may be found using these approaches. An

alternative to the ILP approaches which learn within the existing ontology are

statistical methods which will be presented in the following section.

Adaptation of Machine Learning Methods

In contrast to the ILP-inspired methods presented above, there are also many

approaches which are based on statistical analyses of the available ontology data.

These methods adapt classical machine learning methods which usually were

developed for working with relational database data, such as the k-nearest neigh-

bors method to work with ontology data.

k-nearest Neighbor Approaches. Fanizzi et al. (2007) have adapted a k-

nearest neighbor approach for learning class assignments in ontologies by defin-

ing a suitable similarity measure between individuals from the ontology. The

similarity measure is based on concepts to which the individuals do or do not

belong. The set of atomic concepts and any other concept defined explicitely in

the knowledge base is a set of features which enables good performance of the

classifiers (d’Amato et al., 2008). The rationale for these similarity measures is

that the similarity between individuals is determined by their similarity w.r.t.

each concept in a given committee of features (a sort of similarity context). Two

individuals are maximally similar w.r.t. a given concept if they exhibit the same

behavior, i.e. both are instances of the concept or of its negation. Because of

the open-world semantics, a reasoner may be unable to ascertain the concept-

membership of some individuals, hence, since both possibilities are open, an

intermediate value is assigned to reflect such uncertainty.

Kernel methods. In a different line of research kernel functions for Semantic

Web data have been proposed. Kernel methods are a promising candidate for

learning from this kind of data as they separate the data representation from

the learning algorithm and once suitable kernel functions for some kind of data

have been defined, the whole family of learning algorithms may be applied to

this data representation. In principle, kernel methods thus present a general

framework for learning in the context of the Semantic Web, as they allow for

the direct application of existing methods in a Semantic Web context.

Kernel functions for Semantic Web data rely on the same ideas as kernel

functions for data represented in any logical formalism. The basic idea presented

by Gärtner et al. (2004) consists in defining kernel functions based on type

construction, where types are defined in a declarative way. Given a set of type

constructors, they propose to define one kernel per type constructor. The thus-
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defined kernels can then be combined using kernel modifiers such as sum and

product.

The first kernel functions for semantic web data were restricted to the basic

description logic ALC (Fanizzi and d’Amato, 2006, 2007). These kernel func-

tions compare instances based on the structural similarity of the AND-OR trees

corresponding to a normal form of the instances’ concept descriptions (Baader

et al., 2007). Their applicability is restricted due to the employment of the no-

tion of (approximations of) most specific concepts (Baader et al., 2007) in order

to lift instances to the concept-level where the kernels actually work. Addi-

tionally, the normal form of the concept descriptions is specific to the employed

description logic. However, these kernels are not purely structural since they

ultimately relies on the semantic similarity of the primitive concepts assessed

by comparing their extensions (approximated by their retrieval) through a set

kernel. Structural kernels for richer DL representations have been proposed by

Fanizzi et al. (2008a). Here, the kernels from Fanizzi and d’Amato (2006) and

Fanizzi and d’Amato (2007) were extended to cover ALCN .

A definition of kernel functions for individuals in the context of the standard

Semantic Web representations is reported by Bloehdorn and Sure (2007). The

authors define a set of kernels for individuals based on their similarity with

respect to the various kinds of assertions in the ABox (i.e. with respect to

common concepts, datatype properties and object properties).

A more flexible way of defining kernel functions is based on simple similarity

functions parameterized on the semantics of instances w.r.t. a committee of

concepts. Such kernels can be integrated with many efficient algorithms, that

can implicitly embed feature selection. These functions transform the initial

representation of the instances into the related - so called - active features, thus

allowing for learning the classifier directly from structured data (Cumby and

Roth, 2003). In this spirit, a different set of kernels, which is directly applicable

to individuals, has been proposed by Fanizzi et al. (2008b), adopting the ideas

of the similarity measure defined by d’Amato et al. (2008). This approach for

defining kernel functions rely on a well-modelled domain in which features may

be distinguished according to the concepts they belong to. Information which is

not expressed by means of a concept is not taken into account by this approach.

Bicer et al. (2011) have proposed kernel methods for links in RDF graph

which are based on the grounding of specific ILP clauses in the RDF data

graph. The actual kernel function is learned as a non-linear combination of

simple clause kernels. However, their learning approach does not allow for the

direct use of the proposed kernel function in any kernel machine. Instead, an

adaptation of the learning algorithm for choosing the adequate clause kernels is

needed.
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Statistical Learning. In the context of the Semantic Web, Statistical Learn-

ing approaches are mainly applied to the Link Prediction problem which consists

in deciding whether a link of a specific type should exist between two entities of

interest.

Matrix-based approaches for solving this problem define a relation matrix

which contains the elements of the domain of the relation as rows and the ele-

ments of the range as columns. Additional knowledge for the domain instances

may be added as additional columns. The entries of the relation matrix are

random variables expressing whether there is a link of the desired type between

the two entities. Matrix-completion methods such as Singular-Value Decom-

position are then applied to the matrix to obtain predictions for the unknown

values (Tresp et al., 2009; Huang et al., 2010). The matrix completion approach

relies on the instances of the learned relation itself as well as on small parts of

the direct neighborhoods of the relation subjects. Additional information which

could help the approach, e.g. on the similarity of the objects, is not used in this

approach.

Relational Graphical Models provide a different approach for statistical mod-

eling of the domain of interest. A belief network is defined where each possible

statement is represented by a random variable and the prediction consists in

finding the assignment of truth values to the random variables which yields the

highest propability and thus is most likely to be true. Rettinger et al. (2009)

use this kind of approach for link prediction in semantic data. Their approach

allows for exploiting formal domain knowledge as prior knowledge in the belief

network. An interesting aspect of this approach is that while learning one rela-

tion it is also possible to determine missing statements for other relations using

this approach.

Association Rules. Völker and Niepert (2011) have proposed an approach

for inducing a schema for RDF knowledge bases. Based on the concepts and

relations present in the ontology, axioms are obtained using a frequent itemset

mining approach. The axioms are derived from a transaction database which

contains for each instance the information to which concepts it belongs. As-

sociation Rules are mined from this transaction database, where each found

association rule indicates a probable concept inclusion. The axioms learned us-

ing this approach include class and property hierarchies as well as domain and

range desctrictions.

4.2.3 Ontology Learning

Ontology Learning from lexical resources has received a lot of interest as tex-

tual descriptions of objects or concepts are often available and easier to state

than the equivalent logical formula. Additionally, Information Extraction is a
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wide field in which many methods now used in the context of ontologies have

been developed before ontologies have become a popular means for knowledge

management.

The LExO approach (Völker et al., 2007a) aims at refining the definition

of concepts for which a textual definition is available. The method works by

applying a set of manually defined rules to translate the description text into

a set of logic formulas. An example for a rule would be that two parts of the

description linked by “or” form a union in the resulting formula. This approach

relies on clear definitions of the involved concepts and relations in a formal

language. This means that the effort needed for modelling an ontology is reduced

only by the factor of writing the logical formula representing the concept, the

definitions themselves have still to be written by the ontology engineer.

Cimiano et al. (2005) have employed a combination of text analysis and

FCA for learning concept hierarchies. The available text corpus is parsed and a

formal context is constructed where the noun phrases from the corpus are used

as objects and the verbs they cooccur with are used as attributes. Using this

formal context a concept lattice can be derived from which the result concept

hierarchy is obtained after pruning.

Völker and Rudolph (2008) have proposed the integration of the LExO ap-

proach (Völker et al., 2007a) for learning concept descriptions with Relational

Exploration (Rudolph, 2006). The goal of this approach is to refine an ontology

with respect to a specific concept. It is assumed that a textual description of

the concept is available which can be used for obtaining first descriptions for

the new concepts. Relational Exploration can then be used in a second step

on a predefined set of concepts to clarify their relation to other elements of the

ontology. This approach integrates ideas from ontology completion and ontol-

ogy learning. Still, the formal definition of the learned concept is necessary.

However, the Relational Exploration facilitates the seamless integration of the

new concept with the existing ontology.

Velardi et al. (2005) have proposed a method for ontology learning which is

less guided and may start ontology learning from scratch. The first step of the

approach consists in finding relevant terms in a given corpus. Then, definitions

of these terms are sought on the web. If such definitions are found they can

be used for refining the concept they define. If no suitable definition is found

for complex expressions but definitions for their components are found, these

partial definitions can be used for the definition of the complex concept after

it has been found how the partial concepts are related in the complex concept

name. If no suitable definitions are found on the Web even for parts of the

concept name, then WordNet (Fellbaum, 2005) is used as resource for selecting

the appropriate senses for the concept terms. This approach allows for a fully

automated learning approach. However, this may lead to ontologies of low
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quality and a lot of manual work may be needed for obtaining an acceptable

ontology. Therefore, interactive semi-automatic approaches may be preferred in

many cases.

Buitelaar et al. (2004) propose to extract concepts from text through the

manual definition of so-called mappings. A mapping here is a rule which defines

how a class may be identified in the text. The rules may not only depend on the

lexical analysis of the text, but may also base on tokenization, part-of-speech

tagging, morphological analysis and lexical semantic tagging. The drawback of

this approach is that it requires a precise definition used for the extraction of

instances, which also rely on linguistic concepts requiring the domain engineer

to be familiar with these concepts for modelling the domain. However, the

approach presents a trade-off between the approach by Velardi et al. (2005)

which is completely unsupervised and the approach by Völker and Rudolph

(2008) which relies on formal textual definitions of the concepts.

Cimiano and Völker (2005) have proposed a framework which extends the

above-described approaches with a probabilistic ontology model. The learned

axioms are not represented using a specific ontology model like OWL or F-

Logic but using a set of language-independent modeling primitives. This generic

model can easily be translated into various ontology models. Each of the found

axioms is associated with a probability of its holding in the ontology. Thus,

each learned statement has a confidence value attached which helps the domain

engineer decide which of the axioms should hold in the learned ontology. This

approach is interesting as it takes the varying quality of the identified concepts

and relations into account and presents the confidence of the system in some

learned knowledge to the user.

While most of the presented approaches focus on relatively light-weight ax-

ioms, Völker et al. (2007b) have proposed a method for learning more complex

axioms, specifically disjointness axioms. They propose to learn a classifier for

deciding whether two classes are disjoint. The features are based on information

from the ontology, such as common subclasses of the two classes of interest or

subsumption relations between the two classes. Additionally to the measures

of similarity taken from the ontology itself, a text corpus is used for obtaining

additional evidence: e.g., if two classes occur in the same enumeration, their

likelihood of being disjoint increases.

4.2.4 Ontology Revision

Ontology Revision deals with the integration of a set of newly acquired axioms

into an existing ontology. Here, the goal consists in adding new knowledge resp.

retracting knowledge from an ontology in a way that the result is a consistent

ontology which incorporates the new information.
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Stojanovic (2004) have proposed so-called evolution strategies which are de-

fined for each possible type of change. The evolution strategy defines the addi-

tional changes that may have to be applied and the problems that may occur

when a change is applied and thus guide the detection and resolution of problems

occuring in the change process. While this approach allows for the completely

automatic change integration, the considered changes are identified on a purely

structural level which does not take information from the domain into account.

In the same spirit of completely automatic change integration a set of ap-

proaches inspired by Belief Revision have been proposed. Qi and Yang (2008)

give an overview of approaches for Ontology Revision issued from the field of

Belief Revision. The goal of methods in this field consists in defining a logic

operator (a so-called revision operator) which ensures (in the case of addition of

a new set of axioms) that the new information is part of the new ontology, that

the ontology is consistent, that as little as possible is changed in the original on-

tology and that the obtained result is independent of the syntactic formalization

of the added knowledge. The result of the application of the revision operator

is a set of ontologies, in which each ontology is consistent and incorporates the

newly added information. In this spirit, (Konstantinidis et al., 2008) have pro-

posed a general framework which is able to deal automatically with any kind of

change in the case of an RDFS ontology using a belief revision approach. The

drawback of Ontology Revision approaches in many scenarios is that their goals

are pursued in a domain-independent way. While the revision operator may

propose the removal of a single axiom, it may be more pragmatic to perform a

bigger change, i.e. to change more of the existing information, or to even refuse

to integrate parts of the new knowledge.

Calvanese et al. (2010) have studied the applicability of belief revision ap-

proaches developed in the context of OWL-lite knowledge bases and have shown

that most existing approaches lead to counter-intuitive results or to inexpressive

results in this scenario. They therefore propose a new semantices for OWL-lite

which allows for unique results when used for ABox evolution.

While Belief Revision approaches provide a fully automatic approach for

integrating new axioms in the ontology, it might be desirable to let a domain

engineer decide whether all the new axioms should be added to the ontology and

which axioms to remove from the original ontology. This is for example useful

when the newly acquired axioms are of possibly low quality, e.g. because they

were acquired using some ontology learning tool. Nikitina et al. (2011) have

proposed an interactive approach for this problem. They propose a method

which combines automatic and manual evaluation of axioms while requiring as

little input from the domain engineer as possible. The general idea is to define

an impact function for each axiom which expresses how many axioms can be

evaluated automatically if the axiom is accepted resp. refuted. Those axioms
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with the highest impact are then evaluated first.

4.2.5 Ontology Amendment

The problem of automatically amending an ontology with new knowledge, i.e.

of acquiring and integrating new knowledge in cases where the current ontology

is not sufficient for solving the task at hand has been studied in the multi-

agent systems community. They have researched how agents may automatically

extend their ontologies in order to automatically adapt to new requirements.

Their approaches discuss how agents can automatically integrate their ontologies

with those of other agents to be able to communicate and collaborate with them.

Soh (2002) have proposed that agents should have their own vocabularies and

that communication between them might be achieved through mapping tables

which allow for translating from the own vocabulary to other agents’ vocabu-

laries. This requires that the meaning of a concept to which other agents map

their vocabulary may not change over time as otherwise the mapping tables are

invalidated. Another problem is posed by finding mappings between concepts of

different agents. Bailin and Truszkowski (2002) have proposed a protocol which

enables agents not only to identify communication problems, i.e. concepts and

terms they do not understand, but also to acquire knowledge about the commu-

nication partners domain model. Based on the identified problems a dialogue

between the agents is established which enables the agents to learn about the

terms they could not understand (properly) before.

For the actual exchange of information about the different concepts and to

gain an understanding of the communication partners’ concept, Afsharchi et al.

(2006) propose to query the other agents for positive and negative examples for

the newly acquired concepts. The thus obtained examples may serve as input for

a concept learning method which then returns a description of the new concept.

This approach allows for acquiring the description of a concept of another agent

in terms of the own domain conceptualization.

The cost of learning concepts has been taken into account by Packer et al.

(2010b). They propose a method for selectively learning specific concepts thereby

considering the cost of increasing the size of the ontology and of working with

a bigger ontology. In contrast to previous approaches, their approach considers

learning several concepts at a time instead of triggering the acquisition for every

single concept.

4.2.6 Ontology Reduction

With the growth of an ontology in size, it becomes less efficient to use and query

response times are increasing. In order to overcome this problem, forgetting ap-

proaches have been proposed. Their idea is to reduce an ontology in size by
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deleting parts which are infrequently used or which are cheap to relearn (Packer

et al., 2010a). To achieve this, a concept forgetting value is assigned to each con-

cept which determines the importance of the concept for the ontology in terms

of frequency of use and cost of acquisition. The actual forgetting then removes

the concepts from the ontology. A challenge in this step consists in retaining all

the knowledge which is not part of the forgotten concept, such as subsumption

relations (Wang et al., 2008). While forgetting is feasible in lightweight ontology

languages such as DL-lite (Wang et al., 2008) and EL (Konev et al., 2009), there

may not be a valid knowledge base with a specific concept removed in case of

more expressive ontolgoy languages (Wang et al., 2009). The problems of these

approaches consist in their unguided operation which means that the forgetting

algorithms may choose to remove concepts from an ontology that are needed in

the future while other concepts may have become superfluous. However, these

approaches are especially developed for the case of automatic ontology evolution

where new knowledge is acquired automatically and thus also the reduction has

to happen in a completely automatic way.

The approaches for forgetting from ontologies reduce the amount of knowl-

edge which is represented in the ontology and thus make the ontology less knowl-

edgeable with respect to some parts of the domain. This means that the new

ontology is not able to answer all the queries that could be answered using the

old ontology. Grimm and Wissmann (2011) have proposed an approach for re-

ducing the size of the ontology without removing any knowledge from it. They

aim at identifying and removing any parts of the ontology which are redundant,

i.e. which could be removed and still be inferred using a reasoner afterwards.

4.3 Discussion

The last section shows that a considerable amount of work has been invested

in developing methods which support the Ontology Change process. The ap-

proaches to support the ontology change process are manifold and various ap-

proaches have been developed to support the different kinds of changes that

might be done on an ontology.

The refinement scenario is mainly supported with statistic approaches which

learn parts of the ontology from various data sources. As external sources,

mainly text corpora have been considered. The approaches rely on the applica-

tion of text mining and information extraction methods. Based on the analysis

of textual data with these means, rules and descriptions are derived. An inter-

esting approach consists in using the current conceptualization of the domain

to derive additional information which can not be obtained through deductive

approaches. Two main classes of approaches may de distinguished in this class

of approaches, those based on adaptations of ILP and those adapting classi-
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cal machine learning approaches. However, the existing machine-learning based

approaches have a two-fold shortcoming: either they rely on a manual feature

definition, making them difficult to apply in practice, or they use reasoning

for calculating the feature representation making their application expensive in

many practical cases. We therefore think that learning approaches using a gen-

erally defined feature space which can be efficiently computed and do not rely

on the solution of expensive reasoning tasks are an interesting alternative (see

Chapters 5 and 6).

The knowledge obtained using these approaches can then be integrated into

the ontology either using one of the fully automatic approaches, or an interactive

revision approach may be used. The automatic approaches rely on automatic

resolution of the problems arising from the change process. This requires ex-

pressive formalisms in which problems manifest themselves e.g. through incon-

sistency or incoherence. The alternative are interactive methods which identify

the valid knowledge in collaboration with the user who either has to accept or

refute certain axioms manually or who has to give examples which allow for

accepting or refuting certain knowledge.

While the knowledge integration approaches may also be applied in other

change scenarios, the requirements for knowledge acquisition change in these

scenarios as the discrepancies between the domain model and the requirements

resp. the domain drive these needs for changing the ontology. For the evolution

scenario, approaches for extending the ontology with parts from other ontolo-

gies have been proposed as well as approaches for automatically eliminating

superfluous knowledge once it is not needed anymore.

In the update scenario the case is slightly different. There, the adaptation

of the knowledge has to be done based on information from the domain. On-

tology learning approaches may help in acquiring information which is new in

the domain. However, it is unclear which of the knowledge which is currently

modelled is invalidated by the new information. Either interactive revision or

completion approaches may be used in this case. Therefore, an approach which

is able to identify the implications of new knowledge on the currently modelled

information is needed. We propose to predefine the effects of domain updates

using so-called update specifications (see 7).
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Chapter 5

Kernel functions for RDF

data

Incompleteness is an important problem in the context of knowledge bases. Even

if certain information is required by the ontology, it cannot be guaranteed that

this information is available.

To overcome this problem of missing data, methods for inducing information

about entities are needed. While in some cases, reasoning may help to deduce

the wanted information, there are situations which cannot be resolved by pure

deductive methods. For example, we may require in an ontology that a person

has an age attribute attached. This allows to infer for an entity of type person

that it has an age, but the value of the age attribute remains unknown.

We propose to use machine learning methods to infer this missing informa-

tion. The idea is to learn classification respectively regression models which can

infer the missing property values. E.g., in the case of the missing age attribute,

the solution would be to use the entities for which an age attribute is available

to learn a regression model which is able to predict for entities not used in the

training set what their age value should be.

Ontology learning methods and annotation tools use this kind of approach for

extracting information from sources external to the ontology, like a text corpus.

In this work, the goal is to infer the information from data which is internal to

the ontology and the knowledge base, i.e. to use the available semantic data

to infer new semantic data, which may then be integrated into the knowledge

base.

This kind of approach requires methods for using semantic data as input for

machine learning algorithms. The challenge thus consists in adapting existing

machine learning algorithms which typically rely on vectors as data representa-

tion such that they can be used for mining semantic data. The essential design

decision thus lies in defining suitable features to represent the entities at hand.

57
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In this chapter we focus on the question how established machine learning

algorithms can be made amenable to work on instances represented by means

of RDF graph structures. We have decided to focus on graph structures as

source for features as extracting semantic features such as class memberships is

expensive. An additional reason for this choice ist the restricted deductive power

of RDF reasoning, i.e. only few semantic properties which are not explicitely

stated may be inferred.

Existing approaches for mining from semantic data have focused either on

one specific learning problem (Rettinger et al., 2009; Huang et al., 2010; Bicer

et al., 2011), i.e. the approach is not easily transferable to other learning

problems, or they rely on clean, strongly axiomatised ontologies (Fanizzi and

d’Amato, 2006; Fanizzi et al., 2008a,b) or features which have to be defined

manually for each dataset (Bloehdorn and Sure, 2007). In our work we aim at

an approach which can be applied to a wide set of learning problems on a wide

set of ontologies without the need for extensive customisation.

Motivated by the broad applicability of graphs for modeling data, graph

mining has received considerable interest over the last years and there has re-

cently been significant progress in mining graph-structured data representations.

A particularly successful research direction along this line is the use of kernel

methods (Shawe-Taylor and Christianini, 2004).

Kernel methods provide a powerful framework for decoupling the data rep-

resentation from the learning task: Specific kernel functions can be deployed

depending on the format of the input data and combined with readily avail-

able kernel machines for supervised and unsupervised learning tasks, such as

classification, regression, one-class classification or clustering. The challenge of

learning from RDF data within this framework can be reformulated as designing

adequate kernel functions for this representation.

In fact, various kernel functions for graph structures have been proposed

over the last years, typically in the context of mining biochemical structures.

However, graphs representing e.g. chemical structures have different properties

than RDF: Chemical compounds usually have few node labels which occur

frequently in the graph and nodes in these graphs have a low degree. In contrast,

RDF node labels are used as identifiers occurring only once per graph and nodes

may have a high degree.

Here, we investigate these issues, i.e. review the problems that arise when

existing graph kernels are used with RDF graphs. Improving on that, we then

introduce two versatile families of graph kernels based on intersection graphs

and intersection trees, discuss why they can exploit the inherent properties of

RDF better, and show that their computation can be performed efficiently.

The remainder of this chapter is organized as follows: Section 5.1, shortly

review a number of existing graph kernels. In Section 5.2 we motivate and
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describe the ideas underlying the kernel functions we have defined, Section 5.3

describes how instances are defined in the context of our approach, Sections 5.4

and 5.5 introduce two new families of kernel functions based on intersection

graphs and intersection trees, discuss their properties and, specifically, their

applicability for learning from RDF data. In Section 5.6, we report on several

experiments which demonstrate the flexibility of the new kernel functions and

evaluate their performance in practical settings compared to non-RDF-specific

graph-kernels. We review related work on kernel functions for “semantic” data

in Section 5.7 and conclude with a discussion and an outlook in Section 5.8.

5.1 Graph Kernels

As we only focus on the structure of the RDF graph for mining it, it would in

principle be possible to apply any graph kernel to the problem at hand. We

will here review some of the existing graph kernels with respect to whether they

offer suitable representations of RDF graph structures.

Due to the expressivity of graph structures, the definition of kernel functions

for arbitrary graphs has proven to be difficult. Research on kernel functions

for structured data has thus concentrated for a long time on specific types

of graphs with specific restrictions as e.g. tree kernels (see Shawe-Taylor and

Christianini (2004) and references therein). In the spirit of the Convolution

Kernel by Haussler (1999), which represents a generic way of defining kernels,

kernel functions for general graphs have later been devised by counting common

subgraphs of two graphs.

However, as the subgraph isomorphism problem, i.e. the problem of identi-

fying whether a given input graph contains another input graph as its subgraph,

is known to be NP-complete, it is not feasible to search for general subgraphs

in the input graph. However, the search for common subgraphs with specific

properties can often be performed more efficiently.

Horváth et al. (2004) have defined a kernel which is based on counting com-

mon cyclic and tree-like patterns in undirected labeled graphs, independent of

their frequency. The kernel is defined on undirected graphs and thus not directly

applicable to RDF as the direction of the application of an RDF property is an

important property.

Shervashidze and Borgwardt (2009) propose a kernel that is based on count-

ing common subtree-patterns of the input graphs. Here, only complete tree

matches are counted. In their algorithm, a growing neighborhood of each node

is encoded into the node labels. Two nodes are matching if they have the same

label. In our experiments we have experienced that this kernel often only yields

single matching nodes in the case of RDF graphs. No bigger structures can

be matched. This is due to the property of RDF that each node has a unique
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label: a tree pattern can only be matched, if the root nodes have all properties

in common and if they have the same property value for each of the properties.

Gärtner et al. (2003) have defined a kernel which is based on counting walks

within the graph. The feature space consists of one feature for each possible

label sequence. The feature weight for each sequence is the number of times

this sequence occurs in the graph, weighted by a factor for sequences of different

lengths. The kernel which is obtained using this feature mapping can efficiently

be computed based on the product graph: It is sufficient to calculate the limit

of certain matrix power series using the adjacency matrix of the product graph

of the two input graphs. However, the kernel value is obtained via calculating

a matrix inverse which has cubic time complexity and becomes expensive for

larger graphs. Section 5.2 will build on some of the ideas of this kernel.

5.2 Kernel Functions for RDF Graphs – Basic

Ideas

In this section we present the core contribution of this chapter, two classes of

kernel functions based on intersection graphs and intersection trees, specifically

tailored to the properties of RDF.

Before introducing our kernel functions, we define the graph structure on

which machine learning shall be carried out. The basic building blocks of RDF

knowledge bases are triples (s, p, o), which are interpreted by s has a relationship

of type p to o. A set of such triples can be represented as a graph:

Definition 31 (RDF Graph) An RDF graph is defined by a set of triples of

the form G = {(s, p, o)} = (V,E), where the subject s ∈ V is an entity, the

predicate p denotes a property, and the object o ∈ V is either another entity or,

in case of a relation whose values are data-typed, a literal. The vertices v ∈ V
of G are defined by all elements that occur either as subject or object of a triple.

Each edge e ∈ E in the graph is defined by a triple (s, p, o): the edge goes from

s to o and has label p.

Note that this defines a multigraph which allows for multiple edges between

the same two nodes, as long as the type of the relation is different.

The more advanced modelling elements of RDF can also be transformed

into graph structures through the direct translation of the triples that represent

them. However, the semantics of structures such as lists or reification is not

represented specifically in the RDF graph.

We look at RDF entities as the instances for learning. For example, two sets

of entities, identified by their URIs could be positive and negative classes in a

classification scenario. The argument entities’ neighborhood in the overall RDF

graph forms the basis for their kernel-induced feature representations.
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Essentially, all proposed kernel functions are thus based on a neighborhood

graph which is obtained by a breadth-first search up to depth k starting from

the entity of interest. We have defined two versions of the neighborhood graph:

either all encounters of a node label are mapped to the same node in the neigh-

borhood graph or each encounter of a node label defines a separate node in the

neighborhood graph . Here, each encounter of a node is defined by a walk of

length ≤ k from the entity of interest to the node. In the first case we call the

neighborhood graph instance graph, in the second case we call it instance tree.

A more detailed explanation of instance graphs and instance trees can be found

in the following sections.

We define RDF kernels in a similar manner to other graph kernels by adopt-

ing the idea of counting subgraphs with a specific structure in the input graphs.

Formally, this means that the (implicit) feature mapping for a neighborhood

graph G representing the instance given a set of feature graphs H should be of

the form:

φ(G) =
∑
h∈H

|{g|g ⊂ G ∧ h ∼= g}| (5.1)

The essential difference is that, as RDF builds on unique node labels, each

RDF subgraph h can occur at most once in the input graph. This is not the

case in general graphs, where it is common that several nodes carry the same

label – thus yielding potentially several equivalent subgraphs.

Blank nodes seem to present a special case at first: blank nodes are nodes

without labels and thus blank nodes are not identified by their URI. Thus,

blank nodes seem to break the unique label assumption which is a basis for the

definition of our kernel functions. However, a blank node is given a temporary

label in the serialisation of an RDF graph. We treat these labels as normal labels

which allow for the identification of the blank node and thus the distinction

between labeled nodes and blank nodes is not necessary in our approach.

Therefore, when calculating the kernel function between two RDF graphs, it

is not necessary to identify the interesting structures and their frequencies in the

two graphs separately. Instead, it is sufficient to analyze a single structure which

contains the features of interest common in both input graphs. Gärtner et al.

(2003) have proposed kernel functions which are based on counting common

structures in the direct product graph. In the case of graphs with unique node

labels, like RDF, this is equivalent to what we call the Intersection Graph which

we define in Section 5.4.

For each of the definitions of the neighborhood graphs sketched above, we

have defined a way of representing their common structures , which are used as

basis for the two families of kernel functions we define: In Section 5.4 we will

present the first type of kernel functions which are based on intersection graphs



62 CHAPTER 5. KERNEL FUNCTIONS FOR RDF DATA

Input 
 
 
 
 

RDF Data 
Graph 

Entity e1 

Entity e2 

Instance Extraction 

Instance Graphs 
 
 
 

G(e1) G(e2) 

Graph 
inter-

section 

Intersection Graph 
 
 
 

G(e1) G(e2) Feature Count 

Output 
 
 
 

Kernel value 
k(e1,e2) 

Figure 5.1: Process of kernel calculation

(obtained from two instance graphs), in Section 5.5 the second type which is

based on intersection trees (on the basis of instance trees) will be presented.

The common structures that have been extracted are the structures which

are used for counting the common features of the two entities. The features have

to be chosen in a way that the kernel property of the resulting kernel function

can be ensured. In most cases we will argue the validity of the proposed kernel

functions through an explicit mapping φ into a feature space where the dot

product gives the same result as counting the common structures.

An overview of the process of calculating the proposed kernel functions is

given in Figure 5.1. First, the neighborhood graphs of the two input entities

are extracted. Then, the intersection of the two instance graphs is built which

represents the common elements of the two instance graph. In the last step,

certain features are counted in this intersection graph. In the following we will

present details on how these steps may be instantiated.

5.3 Instance extraction

We assume that the entities in the dataset are all represented in a single data

graph. Note that if there are several input graphs, these can easily be merged

into a single graph. However, the data should be modelled using the same

vocabularies, as these provide the identifiers and labels we use for checking

whether instances have common features.
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Given the data graph and an instance, the first step consists in identifying

the part of the graph which is relevant for the entity at hand. We decided to

have extraction methods which are domain-independent and that do not require

any knowledge on what kind of information is modelled. We assume that all

information relevant for the entity of interest is part of its neighbourhood and

has a distance to the entity which is less or equal to some maximum distance d.

Note that it would also be possible to explicitely model which kind of rela-

tions and information are to be considered in the instance description. How-

ever, this would require a lot of manual effort, as for each classification problem

a decision which information in the entities’ neighborhood is relevant for the

classification has to be made.

When considering the d hop neighborhood, this consideration is still neces-

sary with respect to the choice of d. If d is set to 1, only the direct properties of

the entity are considered. However, it may be useful to use information which

is farther away from the entity. Consider for example a setting where the enti-

ties of interest are people. An entity directly related to the person is the city

they come from, which itself is connected to the country which it belongs to.

Two people from the same country may however be more similar than people

from different countries. Using indirect properties accounts for this source of

similarity. The same kind of reasoning may be employed to argue for the use

of larger ds. However, with the growth of d the extracted graphs grow expo-

nentially (and thus also the cost of kernel calculation) and also noise which is

not helpful for distinguishing between the entities of interest is introduced. If

d is chosen too large, the whole data graph may be equivalent to each instance

graph and no distinction between the entities is possible. It is thus crucial to

choose d appropriately.

We have defined two different kinds of graphs for representing instances:

instance graphs and instance trees. While the first type represents a subgraph

of the neighborhood graph, the second one is a tree containing the structure of

the entities’ neighborhood. The motivation for not only using the neighborhood

graph is that trees can often be handled more efficiently than general graphs.

5.3.1 Instance Graphs and Intersection Graphs

An instance graph of depth d can be extracted from the data graph using

breadth-first search up to depth d starting from the entity of interest e. All

elements encountered during the search are added to the instance graph.

The instance graph of depth d for entity e can be obtained using Algorithm 2.

Given the two instance graphs, the next step consists in extracting the parts

which the two graphs share. The intersection graph of two graphs is a graph

containing all the elements the two graphs have in common.
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Algorithm 2: Extraction of an instance graph of depth d for entities e

Input: entity e

maximum graph depth d

Data: RDF data graph G = (V,E), where labels of entities e

Result: graph: Instance graph of depth d for entity e

1 graphNodes ← {e}
2 graphEdges ← ∅
3 newNodes ← {e}
4 for i = 1 : d do

5 nodes ← newNodes;

6 for node ∈ nodes do

7 newNodes← {ei|(node.label, p, ei) ∈ G}
8 newEdges← {(node.label, p, ei)|(node.label, p, ei) ∈ G}
9 graphNodes← graphNodes ∪ newNodes

10 graphEdges← graphEdges ∪ newEdges
11 end

12 end

13 graph← (graphNodes, graphEdges)

Definition 32 (Intersection Graph) The intersection graph G1 ∩G2 of two

graphs G1 and G2 is defined as:

V (G1 ∩G2) = V1 ∩ V2

E(G1 ∩G2) = {(v1, p, v2)|(v1, p, v2) ∈ E1 ∧ (v1, p, v2) ∈ E2}

To illustrate the notion of instance graphs and intersection graphs consider

the Example in Figure 5.2. In the given graph, all nodes are reachable within

2 steps from the node person100. Thus, the instance graph of depth 2 for the

entity person100 corresponds to the whole datagraph. The instance graph for

person200 is depicted in Figure 5.3. Any node whose distance from person200

is bigger than 2 is not part of the instance graph. Also all relations whose

subject is more than 1 hop away from person200 are not part of the instance

graph. The intersection graph for person100 and person200 is obtained by

intersecting the two instance graphs. As in this case any element which is

part of the instance graph for person200 is also part of the instance graph for

person100, the instance graph for person200 is equivalent with the intersection

graph for the two entities.

Note that if the intersection graph contains a given subgraph, then this sub-

graph is also a subgraph of the two input graphs. Inversely, if a subgraph is

contained in both instance graphs, it is also part of the intersection graph. Now

recall that a kernel function is defined as the scalar product in some feature
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Figure 5.2: Example for instance graphs: The instance graph of depth 2 for

person100 corresponds to the whole data graph in this case.

space. In order for the kernel function to be a valid scalar product, the corre-

sponding feature space has to be defined. In the case of the instance graphs,

any structure which is present in both input graphs is also part of the intersec-

tion graph: thus, counting the features (which can occur at most once due to

the unique names in RDF) in the instance graphs and multiplying the result-

ing feature vectors leads to the same result as counting the structures in the

intersection graph.

Thus, calculating a kernel function based on a feature mapping as defined in

Equation 5.1, i.e. which is based on counting certain subgraphs in the instance

graph, can be reduced to constructing the intersection graph in the first step

and then counting the substructures of interest therein. This is for example

possible for walks, paths, cycles, or connected subgraphs. The corresponding

kernel functions will be defined in Section 5.4.

5.3.2 Instance Trees and Intersection Trees

The use of the intersection graph may become problematic as its calculation

is potentially expensive: the whole instance graph for each entity has to be

extracted and the two graphs have to be intersected explicitely.

However, the size of the instance graph grows exponentially with the number

of hops which are crawled from the entity. Merging the two steps of extracting

the instance graphs and intersecting them is not directly feasible: Consider

an entity e which can be reached within k hops from both entities of interest

e1 and e2, but through different paths. In this case, e would be part of the
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Figure 5.3: Example for instance graphs: The instance graph of depth 2 for

person200 based on the data graph in Figure 5.2.

intersection graph, but it would not be reachable from either e1 or e2 in this

graph. In the following section, we present a different way of extracting common

neighborhoods of two entities e1 and e2, which enables a direct construction

of the common properties, without building the instance graphs first. This

alternative method is based on the use of instance trees instead of instance

graphs. To obtain instance trees as neighborhood descriptions, we use a method

based on the graph expansion with respect to an entity of interest e (as for

example defined in Güting (1992)).

Definition 33 (Graph Expansion) The expansion X(e) of a graph G with

respect to entity e is a tree defined as follows:

• If e does not have any successors, then X(e) is the tree consisting only of

the node e.

• If v1, . . . , vn are the successors of e, then X(e) is the tree (e,X(v1), . . . , X(vn))

(in prefix notation).

In principle, the graph expansion could grow infinitely (if the graph contains

cycles). To avoid this problem and to limit the size of the obtained trees the

graph expansion is bound by some maximal depth k. While in the original RDF

graph, node labels were used as identifiers, i.e. each node label occured exactly

once, this is not true in the expanded graph. If there is more than one path

from an entity e to another entity e′, then e′ will occur more than once, and

thus the label of e′ is not unique anymore.
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An intersection of the instance trees leads to an intersection tree in a similar

spirit as the intersection graph presented in Section 5.3.1. We introduce two

changes to the instance trees as obtained by direct expansion from the data

graph: first, each occurence of either entity of interest e1 or e2 is replaced by a

common dummy node label which does not occur elsewhere in the graph, and

second, when calculating the intersection graph, only parts which are connected

to the root element in the intersection graph are retained. The structure which

we obtain by these steps is called the intersection tree.

The procedure for obtaining an intersection tree as we have described it

above, yields the same problematic overhead as does the construction of the

intersection graph. However, it turns out that the intersection tree can be ex-

tracted directly from the data graph without constructing the instance trees

explicitely. This is especially due to the fact that all elements of the intersec-

tion tree are connected to the root of the tree. Thus, the construction of an

intersection tree can be done much more efficiently than the construction of the

corresponding intersection graph.

The construction of an intersection tree is illustrated in Algorithm 3. The

basic idea of the algorithm is to extract the intersection tree itd(e1, e2) directly

from the data graph. Starting from the two entities e1 and e2 the intersection

graph is built using breadth-first search. Two cases have to be distinguished. In

cases where one of the entities e1 or e2 is found a new node is added to the tree

with a dummy label. For nodes with this label, the common relations of e1 and

e2 are added as children. The second case are all nodes which do not correspond

to one of the entities: for them, a new node with the node’s URI resp. label is

added to the tree, the children of these latter nodes are all relations of this node

in the data graph.

To illustrate the idea of instance trees and intersection trees, we continue

the running example and show the instance trees of depth 2 for the entities

person100 and person200 in Figures 5.4 and 5.5. The corresponding intersec-

tion tree is shown in Figure 5.6. Its root node is a dummy node with a newly

introduced label source which is used to replace any occurrence of person100

and person200 in the tree. The children of the source node are all properties

which person100 and person200 have in common (see line 7 in Algorithm 3),

in this case topic110. Additionally, person100 is linked to person200 via

the foaf:knows property and vice versa, thus an additional node source is

introduced. In the second step, all children of the topic110 are added to the

intersection trees. The children of the second source node are obtained using

the same procedure as in the first iteration.
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Algorithm 3: Extraction of an intersection tree of depth d for entities e1

and e2

Input: entities e1, e2

maximum tree depth d

Data: RDF data graph G = (V,E), where labels of entities e1 and e2 are

replaced by source

Result: tree: Graph expansion X(e1 ∩ e2) of depth d

1 tree ← new Node(”source”,0)

2 newLeaves ← {tree}
3 for i = 1 : d− 1 do

4 leaves ← newLeaves;

5 for leaf ∈ leaves do

6 if leaf .label=”source” then

7 ce← {ei|(e1, p, ei) ∈ G ∧ (e2, p, ei) ∈ G}
8 for p : (e1, p, e2) ∈ G ∧ (e2, p, e1) ∈ G do

9 ce.add(”source”)

10 end

11 end

12 else

13 ce← {ei|(leaf.label, p, ei) ∈ G}
14 end

15 for c ∈ ce do

16 if c ∈ {e1, e2} then

17 label=”source”

18 end

19 else

20 label=c.uri

21 end

22 child ← new Node(label, leaf.depth+ 1)

23 leaf .addChild(child)

24 newLeaves.add(child)

25 end

26 end

27 end
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Figure 5.4: Instance tree of depth 2 for person100

5.4 Kernel Functions Based on Intersection Graphs

Once the intersection graph is calculated, the common features of the two graphs

can be counted in the intersection graph. We have defined several kernel func-

tions which are based on different sets of features: subgraphs, connected sub-

graphs, walks and paths.

5.4.1 Edge-Induced Subgraph Kernel

The set of edge-induced subgraphs qualifies as a candidate feature set.

Definition 34 (Edge-Induced Subgraphs) An edge-induced subgraph of G =

(V,E) is defined as G′ = (V ′, E′) with

E′ ⊆ E

V ′ = {v | ∃u, p : (u, p, v) ∈ E′ ∨ (v, p, u) ∈ E′}

We denote the edge-induced subgraph relation by G′ ⊆ G.

Now recall that a graph G = (V,E) has 2|E| edge-induced subgraphs (as all

subsets of edges define an edge-induced subgraph). Thus we define the subgraph

kernel by:

Definition 35 (Subgraph Kernel) The subgraph kernel is defined as:

κsubgraph(G1, G2) = 2|E(G1∩G2)|
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The corresponding feature mapping is:

φg(G) =

1 g ⊆ G

0 otherwise

where g ∈ G and G is the set of valid RDF graphs.

The subgraph kernel is a valid kernel function, as counting edge-induced sub-

graphs in the intersection graph is equivalent to performing the feature mapping

explicitly and calculating the dot product of the two feature vectors. The dot

product of the two feature vectors corresponds to counting elements which are

part of both input graphs (as subgraphs occur at most once in an RDF graph,

features occur at most once). The edges that are present in both inputs are by

construction the same as those which are part of the intersection graphs.

5.4.2 Connected Subgraphs

Connected elements within the intersection graphs are probable to yield more

interesting results than a set of arbitrary relations taken from the intersection

graph. We have therefore defined additional kernels whose features are restricted

to subsets of all edge-induced subgraphs.

A subgraph is called connected if there exists a semi-walk between each

pair of nodes from the graph, i.e. ∀u, v ∈ V ′∃u = v0, v1, . . . , v = vn+1 with

v1, . . . , vn ∈ V ′ and ∀(vi, vi+1)∃p : (vi, p, vi+1) ∈ E′ ∨ (vi+1, p, vi) ∈ E′.

Definition 36 (Edge-induced Connected Subgraphs Kernel) We define
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the Edge-induced Connected Subgraphs Kernel is defined as:

κcsg,k(G1, G2) = |{g|g ⊂ G, |E(g)| ≤ k, gconnected}|

The corresponding feature mapping is:

φg(G) =

1 g ⊆ G

0 otherwise

where g ∈ Gconn and Gconn is the set of connected RDF graphs.

There is no general formula for the number of connected edge-induced sub-

graphs. Thus, an algorithm for counting these elements is needed. Algorithm 4

counts all connected elements up to size k in a graph. The algorithm starts

by identifying all subgraphs with one edge. In each iteration the size of the

subgraphs is increased by one and an edge which is not yet part of the graph is

added to it. Bigger subgraphs are identified by adding one of the edges in the

current subgraphs neighborhood to the subgraphs found in the last iteration. A

weight factor λ has been introduced which allows to give more or less weight to

bigger subgraphs.

As the algorithm works inductively, it is sufficient to change the termination

criterion in order to count all connected elements.

5.4.3 Walks and Paths

Counting connected subgraphs is expensive in practical, as the check whether a

specific graph has already been found, requires comparing graphs for equality.



72 CHAPTER 5. KERNEL FUNCTIONS FOR RDF DATA

Algorithm 4: Counting connected edge-induced subgraphs up to size k

Input: Graph G = (V,E),

maximum graph size k,

weight λ>0

Result: κ

1 S1 = E

2 κ = λ|S1|
3 for i = 2 to k do

4 Si = ∅
5 for s ∈ Si−1 do

6 candidates = {(u, p, v) ∈ E\s : u ∈ V (s) ∨ v ∈ V (s)}
7 for c ∈ candidates do

8 Si = Si ∪ (s ∪ c)
9 end

10 end

11 κ = κ+ iλ|Si|
12 end

13 return κ

We are therefore interested in subgraphs, which can be counted more efficiently.

We have focused on walks and paths as interesting subsets, as they represent

property chains in RDF.

Definition 37 (Walk, Path) A walk in a graph G = (V,E) is defined as a

sequence of vertices and edges v1, e1, v2, e2, . . . , vn, en, vn+1 with

ei = (vi, pi, vi + 1) ∈ E. The length of a walk denotes the number of edges it

contains.

A path is a walk which does not contain any cycles i.e. a walk for which the

additional condition vi 6= vj∀i 6= j holds. We denote the set of walks of length l

in a graph G by walksl(G), the paths of length l by pathsl(G).

Definition 38 (Walk Kernel, Path Kernel) The Walk Kernel for maximum

path length l and discount factor λ > 0 is defined by:

κl,λ(G1, G2) =

l∑
i=1

λi|{w|w ∈ walksi(G1 ∩G2)}|

The Path Kernel is defined in an analogous manner:

κl,λ(G1, G2) =

l∑
i=1

λi|{p|p ∈ pathsi(G1 ∩G2)}|

The feature space of interest consists of one feature per walk w (resp. path):
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Algorithm 5: Counting walks up to length l

Input: (Intersection) Graph G = (V,E),

maximum walk length k

weight λ > 0 (for giving different weights to walks of different lengths)

Result: κ Count of walks up to length k weighed by weights wi

1 W1 = E

2 κ = λ|W1|
3 for i = 2 to k do

4 Wi = {(v1, . . . , vi−1, vi)|(v1, . . . , vi−1) ∈Wi−1 ∧ ∃p : (vi−1, p, vi) ∈ E}
5 κ = κ+ λi|Wi|
6 end

7 return κ

φw(G) =

λlength(w) w ∈ G

0 w /∈ G

In the definition, the parameter λ > 0 serves as a discount factor and allows

to weight longer walks (paths) different from shorter ones. If λ > 1 then longer

walks (paths) receive more weight, in case of λ < 0 shorter ones contribute more

weight.

As paths and walks are edge-induced substructures of a graph, the validity

of the proposed kernel functions can be shown in the same way as that of the

subgraph kernel. The kernel function can be calculated using Algorithm 7. :

walks of length i are constructed by extending walks of length i − 1. In each

iteration the walks found in the previous iteration are extended by appending

an edge at the end of the walk. For counting paths, the condition that vi /∈
{v1, . . . , vi−1} has to be added in line 4.

Note that a different way of calculating these kernel functions is possible

based on the powers of the intersection graph’s adjacency matrix. The adjacency

matrix M is a representation of a graph in the form of a matrix with one row

and one column per node in the graph and entries xij = 1 if the graph contains

an edge from node i to node j, 0 otherwise. Each entry xij of the kth power of

M can be interpreted as the number of walks of length k existing from node i

to node j. Therefore, the number of walks up to length k in the graph can be

obtained as
∑k
i=1

∑n
j=1

∑n
l=1(M i)jl. By setting the elements xii of Mk to 0,

this formula can also be used for the path kernel.

Gärtner et al. (2003) use this approach for counting walks up to infinite

length by calculating the limes k → ∞ of the matrix power series. They also

use a weight factor to give different weight to walks of different length. However,

for the matrix power series to converge, their weight factor has to be smaller
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than 1. Thus, in their kernel it is only possible to give smaller weight to larger

structures. In the case of RDF, it may however be preferable to give more weight

to larger structures as those convey more meaning.

5.5 Kernel Functions Based on Intersection Trees

As in the case of the intersection graphs, our proposed kernel functions are

based on counting elements in the intersection trees. The features of interest

are restricted to features which contain the root of the tree. This is because

features which are not connected to the root element may be present in each

instance tree, but may by construction not be part of the intersection tree.

5.5.1 Full Subtrees

The first kernel function we propose based on the intersection tree is the full

subtree kernel, which counts the number of full subtrees of the intersection tree
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itd(e1, e2), i.e. of the intersection tree of depth d for the two entities e1 and

e2. A full subtree of a tree t rooted at a node v is the tree with root v and all

descendants of v in t (see Figure 5.7 for an example).

Definition 39 (Full Subtree Kernel) The Full Subtree kernel is defined as

the number of full subtrees in the intersection tree. Subtrees of different height

are weighted differently using a discount factor λ.

κst(e1, e2) = st(root(itd(e1, e2)))

where

st(v) = 1 + λ
∑

c∈children(v)

st(c)

The corresponding feature mapping consists of one feature per subtree:

φs(x) =

λi s subtree of t with height i

0 else

Counting the number of full subtrees in the kernel is equivalent to counting

walks which start at the root of the intersection tree. This is the case because

in a tree there is exactly one path from the root of the tree to every node in the

tree and there is one full subtree per node in the tree. Thus, the two values are

equivalent to the number of nodes in the tree. The full subtree kernel is a valid

kernel function due to this equivalence.

5.5.2 Partial Subtrees

Given a tree T = (V,E), its partial subtrees are defined by subsets V ′ ⊂ V and

E′ ⊂ E such that T ′ = (V ′, E′) is a tree. We propose to define a kernel function

which counts the number of partial subtrees in the intersection tree itd(e1, e2)

which are rooted at the root of itd(e1, e2).

Definition 40 (Partial Subtree Kernel) The Partial Subtree Kernel is de-

fined as the number of partial trees that the intersection tree contains. A discount

factor λ gives more or less weight to trees with greater depth:

κpt(e1, e2) = t(root(itd(e1, e2)))

where t is defined as:

t(v) =
∏

c∈children(v)

(λt(c) + 1)

The function t(v) returns the number of partial subtrees with root v that the tree

rooted at v contains weighted by depth with a discount factor λ. The correspond-

ing feature mapping consists of one feature per partial subtree:
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The corresponding feature space consists of one feature per partial tree up

to depth d where each occurrence of root ei is replaced by a dummy node in

the data graph. The value of each feature is the number of times a partial tree

occurs.

Partial trees of limited breadth

An alternative to counting all partial trees which may be very broad we propose

an alternative which consists in counting all partial trees up to some maximum

breadth.

Definition 41 (Limited Breadth Partial Tree Kernel) The Limited Breadth

Partial Tree Kernel is obtained by counting all partial trees of the intersection

graph whose maximum degree is smaller than b:

κ(e1, e2) = tb(root(itd(e1, e2)))

where tb(v) is defined as:

tb(v) =

min{b,n}∑
i=1

∑
s∈Ci

∏
c∈s

t(c) +

1 n ≤ b

0 n > b

Here, n denotes the number of children of v and Ci the subsets of children(v)

with i elements.

Intuitively, the formula reflects the following line of thought: Given a node v,

one partial tree is obtained by using only this node. Further trees are obtained

by considering each of the subtrees rooted at one of the children separately. In

further steps more and more of the subtrees rooted at one of the children of v

are combined to obtain further partial subtrees.

However, the cost of calculating this kernel function grows exponentially

with growing depth. When changing the sum such that it counts subtrees of

unlimited breadth, the partial tree kernel is obtained.

5.6 Evaluation

To validate our approach we implemented our kernel functions and evaluated

them on two real world data set. In two scenarios, we compare our kernels to two

kernels devised for general graphs: the Weisfeiler-Lehman kernel (Shervashidze

and Borgwardt, 2009) and the Gärtner kernel (Gärtner et al., 2003). The im-

plementation we provide is based on SVMlight (Joachims, 1999) together with

the JNI Kernel Extension.1 The kernel functions are implemented in Java us-

1http://people.aifb.kit.edu/sbl/software/jnikernel/
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ing Jena2 for processing RDF data. The trade-off parameter c of the Support

Vector Machine learning was set to 1 in all evaluation runs.

5.6.1 Evaluation procedure

Results are obtained using leave-one-out cross validation. The reported evalua-

tion measures are error, precision, recall and F-measure. We will shortly explain

the evaluation procedure and the evaluation measures in the following.

5.6.2 Cross-Validation

The goal of classifier evaluation is to estimate how well it performs on unknown

data. Thus, the available labeled data is separated in a training set and a test

set. While the classifier will be trained on the training set, the trained model

will later on be used to score the test data. The classifications which are thus

obtained are then compared to the labels of the test data to decide whether the

model correctly classifies the data.

However, the evaluation measures obtained through a separate training and

test set are heavily dependent on how the training and test split are chosen.

A method for overcoming this problem is n-fold cross-validation. Here, the

evaluation measures are obtained as average of the evaluation measures of n

distinct models. For training these modes the available data is split in n parts

- so called folds. For training each model n− 1 of the folds are used as training

data and the remaining fold is used as test data.

Typical procedures are 5-fold, 10-fold or leave-one-out cross validation. The

latter is the extreme case where each test set consists of exactly one instance.

With growing n the results better approximate the performance of a classifier

trained on all training data, however, the complexity of the evaluation increases,

as a model has to be trained for each fold. All results reported in the following

were obtained using leave-one-out cross-validation.

5.6.3 Evaluation measures

Evaluation of classification is frequently done using the well known evaluation

measures accuracy, precision, recall and F1-measure. The definition of these

measures is based on binary classification scenarios where one of the target

classes is denoted the positive class and one is denoted the negative class.

Definition 42 (Evaluation measures for Classification Systems) Based on

the types of errors that are defined in Table 5.1 different quality metrics can be

defined: Accuracy denotes the fraction of documents that are correctly classified:

acc =
TP + TN

TP + FP + FN + TN
2http://jena.sourceforge.net
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classified as\class positive negative

positive true positive (TP) false positive (FP)

negative false negative (FN) true negative (TN)

Table 5.1: Different types of errors in classification tasks

Recall denotes the fraction of relevant documents that are actually classified as

relevant:

recall =
TP

TP + FN

Precision is defined as the fraction of documents that are actually relevant among

all documents that are classified as relevant:

precision =
TP

TP + FP

As maximum precision is achieved at a minimum recall and vice versa, the

harmonic mean of both measures is frequently considered. The measure is known

as F1 measure.

F1 =
2 ∗ precision ∗ recall
precision+ recall

5.6.4 Evaluation on SWRC Ontology

In a first evaluation setting, we applied our kernels to the person2affiliation task

presented by Bloehdorn and Sure (2007). We report their results although their

approach is not purely based on graph kernels. Additionally, we compared to

two kernels that have been deviced for general graphs: the Weisfeiler-Lehman

kernel (Shervashidze and Borgwardt, 2009) and the Gaertner-kernel (Gärtner

et al., 2003).

Data set

The evaluation uses data from the SWRC ontology (Sure et al., 2005) and

the metadata which is available in the Semantic Portal of the institute AIFB.

The ontology models key concepts within research communities, among them

people, publications, projects and research topics. The evaluation data consists

of 2,547 entities of which 1,058 can be derived to belong to the person class.

178 of these persons are affiliated with one of the research groups at AIFB,

78 of them being currently employed. Additionally, there are 1232 instances

of type publication, 146 instances of type research topic and 146 instances of

type project. The entities are connected by a total of 15,883 relations among

them. Additionally, there are 8,705 datatype properties, i.e. properties linking

an entity to a literal. The evaluation setting defined by Bloehdorn and Sure

(2007) consists in classifying staff members with respect to their affiliation in
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Instance depth 1 2 3

#Instances 178

#Labels 8284

Average #nodes 21.78 139.43 617.35

Max. #nodes 223 1451 3752

Average #edges 21.10 284.14 1546.94

Max. #edges 222 3900 13825

Table 5.2: Statistics of the instance graphs in the SWRC dataset

research groups at AIFB. All relations denoting the affiliation of a person with a

research group were deleted from the training data. We report statistics about

the instance graphs obtained in Table 5.2. Note that – as we would expect –

the size of the instance graphs grows exponentially with the instance depth and

that with increasing instance depth the edge-node ratio increases.

Compared approaches

We compare the results obtained using the kernel functions defined in Sect. 5.2 to

the best configuration obtained in the original paper. This kernel configuration,

denoted by sim-ctpp-pc combines the common class similarity kernel described

in their paper with object property kernels for the workedOnBy, worksAtPro-

ject and publication. The Weisfeiler-Lehman kernel and the Gärtner kernel are

directly comparing graphs. We applied these kernels to the instance graphs of

depth 2 which were extracted from the RDF data graph. The maximum depth

of trees in the Weisfeiler-Lehman kernel was set to 2, the discount factor for

longer walks in the Gärtner kernel was set to 0.5. As additional baseline we de-

fined the edge kernel which is obtained by counting the edges in the intersection

graph. It can also be obtained by setting the maximum path/walk length to 1

in the path/walk kernel. Results are reported in Table 5.5, which can be found

at the end of the chapter. We compared the performance of our kernels on the

whole data set (including the schema) to a setting where all relations which are

part of the schema were removed from the data (lowest part in Table 5.5).

Discussion

Our experiments show that it is not obvious what the best discount factors

for the Partial Subtree kernel are, as results vary strongly. The other kernel

functions we proposed perform more robustly. Another interesting outcome

is the observation, that the exponential cost of increasing the instance depth

(see Table 5.2) does not necessarily improve the results (see Fig. 5.8). This is

probably because the additional data which becomes part of the data graph is

not necessarily useful for distinguishing between entities. Overall, the results
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Figure 5.8: Accuracy for different kernels given instance depth

do not indicate that one of the kernels and one of the kernel configuration is

superior to the others.

In addition, our results show that with specific parameters our kernels reach

comparable error and higher F1-measure than the kernels proposed by Bloe-

hdorn and Sure. Considering that our approach is generic and can be used

off the shelf in many scenarios, while their kernel function was designed man-

ually for the specific application scenario, this is a positive result. Our kernel

functions also perform well with respect to other graph kernels: The Weisfeiler-

Lehman kernel is not able to separate the training data in this case as it can

match only very small structures. While the Gaertner kernel achieves results

which are comparable to our results, its calculation is more expensive - due to

the cubic time complexity of the matrix inversion. Last but not least, a surpris-

ing result is that the kernels which are based on the intersection graph perform

better on the reduced data set which does not contain the schema information

than on the original one. Our explanation for this is that the intersection graph

contains part of the schema and thus produces a similar overlap for many of the

instances.

5.6.5 Evaluation on Livejournal data

In a second setting, a larger dataset consisting of FOAF descriptions of people

from the community website LiveJournal.com was used for experiments.
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Class #Inst. Properties #Inst.

Location 1344 located 3735

School 2794 attend 4118

ChatAccount 5 holdsOnlineAccount 3008

Person 22745 knows 116023

hasImage 4554

Date 4 dateOfBirth 1567

#BlogPosts 5 posted 4872

Table 5.3: Number of known instances of classes and number of known instances

of properties in the FOAF dataset.

Instance depth 1 2 3 D&D

#Instances 1567 1178

#Labels 32861 89

Average #nodes 35.26 550.15 4485.86 284.32

Max. #nodes 440 10779 28130 5748

Average #edges 34.26 934.04 12233.78 –

Max. #edges 439 17643 149234 –

Table 5.4: Statistics of the instance graphs in the SWRC dataset

Data set

Table 5.3 lists the classes, number of instances of each class (left column) and

their properties and number of instances of each property (right column) used

for experiments. Please note that Date and #BlogPosts are reduced to a small

number of discrete states. E.g. the precise age has been replaced by one of four

newly introduced age classes. In all our experiments the goal was to learn how

people are to be classified into an age class.

For the evaluation, we removed all relations of type dateOfBirth from the

dataset and tried to learn this relation afterwards, i.e. the goal was to predict

for all 1567 people with available age information to which of the 4 age classes

they should belong.

We report some statistics on the instance graphs with which we deal in our

experiments in Table 5.4. Note that the graphs for instance depth 2 are already

twice as big as the graphs in the D&D dataset by Dobson and Doig (2003) which

is considered to contain large graphs and is used in the literature to evaluate

mining techniques on large graphs.
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Compared approaches

We have compared several configurations of the kernels proposed in Section 5.2.

We have compared our kernels to the Weisfeiler-Lehman kernel (Shervashidze

and Borgwardt, 2009) and the Gaertner kernel (Gärtner et al., 2003). Results

of our experiments are reported in Table 5.6 (at the end of this chapter). For

the Gaertner kernel it took two months of calculation time to obtain the results,

while the other evaluation runs finished within few hours.

Discussion

Our results show that the walk kernel and the path kernel can outperform the

basic edge kernel in terms of classification errors. However, in terms of F1 mea-

sures, performance deteriorates for structures with more than two edges. This

effect is probably partly due to the way instance extraction was performed in

our experiments: if there are walks with more than two edges in the graph,

they are formed by cross-links in the instance graph, i.e. by nodes which are

reached on different paths during the extraction process. As for the partial sub-

tree kernel it turned out that low discount factors had to be chosen in order to

obtain kernel values which can be expressed within the datatype double and

thus be processed by SVMlight. However, these low discount factors lead to

kernel values which are relatively close to each other and are problematic with

respect to finding an optimal solution in the SVM optimization problem: in

our experiments we frequently encountered single classes for which the classifier

would yield a 0% precision and recall. In this setting, the Weisfeiler-Lehman

kernel performs comparably to our kernels and performance of our kernels de-

teriorates with increasing instance depth. We suspect that both is because age

information can be derived mostly based on the node’s direct neighborhoods,

e.g. the people one directly knows. Traversing the social graph more deeply

does presumably not provide additional relevant information.

5.7 Related Work

Starting with the work of Haussler (1999), research on kernel functions for struc-

tured data, i.e. for data that is expressed in a paradigm different from the stan-

dard vectorial representation, has become a major topic of investigation. In

Section 5.1, we have already reviewed a set of kernel functions on graph struc-

tures and we have discussed the approach of Bloehdorn and Sure (2007) in

the context of our evaluation. In this section, we complement this analysis by

reviewing related endeavours in the area of kernel functions on semantic data

structures like RDF.

As the first work in the direction of kernel functions for logic-based repre-
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sentations, Gärtner et al. (2002) have proposed kernel functions on individuals

represented as (closed) terms of the typed λ-calculus. While the kernel function

can be flexibly tuned to different settings, the formalism used does not build

on an established knowledge representation standard as, in our case, RDF. On

the schema-level, Fanizzi and d’Amato (2006); Fanizzi et al. (2008a) propose a

declarative kernel for semantic concept descriptions in the description logic (DL)

ALC. Structurally, these kernels are based on a representation of ALC concepts

in normal form. The kernel is defined inductively by treating disjunctions (sums)

and conjunctions (products) seperately. The similarity between atomic classes

is measured in terms of the intersection of their extensions. The obvious re-

striction of this approach is that it only allows to compute kernel functions on

concept descriptions but not on individuals. While Fanizzi and d’Amato (2006)

suggest that the kernels on class descriptions could also be used for describing

individuals by means of their most specific concepts, it does not provide any

means to assess the characteristics of a given individual in terms of its object

and data properties which – for the case of RDF – lie at the core of our ap-

proach. To overcome the dependency on DL languages, a different set of kernels,

which can be applied directly to individuals, has been proposed by Fanizzi et al.

(2008b). While these kernel functions come close to our approach, they rely on

clean, DL-based formal ontologies which, in contrast to lightweight RDF-based

data, only constitute a very small part of the “semantic” data sources published.

Summing up, in contrast to the mentioned related work our approach starts

with the raw RDF data and can handle noisy and sparse domains without mak-

ing any assumption on the consistency of the data or manual specifications of

semantic constructs.

Bicer et al. (2011) have defined a kernel function for RDF data which can also

deal with these problems. Their kernel is based on the definition of ILP-clauses

representing triple patterns. However, their approach requires an adaptation

of the learning algorithm for choosing a relevant subset of the feature space.

This adaptation has only been proposed for the case of relational learning (see

Chapter 6), it is not trivial to adapt this selection step for the problem of entitiy

classification that we discussed in this chapter.

5.8 Conclusion

With the advent of the Resource Description Framework (RDF) and its broad

uptake, e.g. within the Linked Open Data (LOD) initiative, an increasing amount

of graph-structured data has become available. In this paper, we have intro-

duced a principle approach for exploiting RDF graph structures within estab-

lished machine learning algorithms by designing suitable kernel functions. We

have introduced two versatile families of kernel functions for RDF entities based
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on intersection graphs and intersection trees and have shown that they have an

intuitive, powerful interpretation while remaining computationally efficient. In

an empirical evaluation, we demonstrated the flexibility of this approach and

show that kernel functions within this family can compete with hand-crafted

kernel functions and computationally more demanding approaches. Another

lesson learned is that RDF graphs have strongly varying characteristics depend-

ing on the domain they are describing. Thus, our experiments suggest that it

is not feasible to find the one single best kernel and parameter setting for RDF

data in general. Every RDF graph as to be analyzed individually and according

to this specific kernels can be recommended. However, as a general finding, the

kernel functions based on intersection trees can be calculated more efficiently

than those based on the analysis of the intersection graph. We also found that

an instance depth of 2 leads to a good performance in most cases while the

graphs can still be handled efficiently.

As an extension to this work, we plan further evaluations in order to obtain

guidelines for the choice of the best kernel function for a specific application.

Further substructures such as cycles may be considered. An interesting aspect is

the integration of background knowledge in the form of manually defined kernels

as proposed by Bloehdorn and Sure (2007).
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Chapter 6

Kernel Methods for RDF

Link Prediction

In the previous chapter, we have presented methods for classifying RDF data.

The goal in the classification problem was to assign entities from an RDF data

set to one of a limited number of groups. The problems we considered where

those of classifying people into age classes and to predict to which research group

a person belonged.

However, these kind of problem statements are not quite in the spirit of

RDF: The core idea behind RDF is to define entities and to link these entities

among each other. In most cases, therefore, a lot more than the limited num-

ber of link targets which could be considered in the classification setting exist.

Consider the affiliation problem: instead of only considering the members of the

research groups at AIFB, we might be interested in classifying the members of

the Semantic Web Research Community according to their affiliation. The high

number of possible affiliations is prohibitive for applying classification methods

to this problem. The stated problem could more efficiently be solved using Link

Prediction.

Link Prediction is the problem of given a pair of entities (x, y) to decide

whether this pair should belong to property p, i.e. whether a link should exist

from x to y with label p. In the case of RDF data, the problem consists in

predicting whether the triple (x, p, y) should exist in the dataset.

In the literature, mostly matrix-based methods have been used to solve this

problem. Here, we focus on the question how kernel-based learning methods

can be leveraged to predict links in RDF graph structures. While the problem

setting of predicting links in graphs is not new (see e.g. Getoor and Diehl (2005)),

the specific properties of RDF require a careful design of the employed kernel

functions.

In the following, we introduce a general model for kernel-based mining of

87
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relations for RDF graphs. We then instantiate the framework based on the

kernel functions presented in the previous chapter. We evaluate and compare

our method for link prediction to a state-of-the-art link prediction methods for

RDF on two datasets.

The remainder of this chapter is organized as follows. In Section 6.1 we

introduce the overall framework for kernel-based link prediction, discuss the

typical problem of availability of positive training instances only, in Section 6.2

we describe how the kernels from Chapter 5 can be used for link prediction. In

Section 6.4, we report on several experiments which demonstrate the flexibility of

our approach and evaluate its performance in practical link prediction settings.

We review related work in Section 6.5 and conclude with a discussion and an

outlook on future extensions in Section 6.6.

6.1 Link Prediction using SVMs

One of the main challenges in link prediction for RDF data is the open-world

assumption. Given an RDF knowledge base, only the expressed relations are

known, whatever is not expressed in the knowledge base is not deemed false,

but unknown. Thus, as RDF does not allow for negation, no negative data

is available for the learning problem. We are thus confronted with a partially

supervised learning problem.

Before presenting our method for link prediction, we will define some basic

notations.

Definition 43 (Link prediction problem) Given a RDF graph G and a prop-

erty p, the problem of link prediction consists in finding a function f such that

for any (s, o), s ∈ domain(p), o ∈ range(p)

f((s, o)) = true⇔ (s, p, o) should hold in G.

We define the set of positive elements P as

P = {(s, o)|(s, p, o) ∈ G}

Accordingly, the set of unknown elements U is defined as

U = {(s, o)|s ∈ domain(p), o ∈ range(p), (s, p, o) /∈ G}

6.1.1 Link Prediction with One-class SVMs

In order to overcome the problem that no negative training data is available,

one-class classification models may be applied. This class of models is able to

learn classifiers based on the training data from one class only.
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We applied One-class SVMs (Schölkopf et al., 2001) to deal with this learning

problem. This version of SVMs is given a set of input data belonging to one class

and aims at finding a small region in the data which contains all the training

examples. This is achieved by finding a hyperplane with maximum margin

separating the training data from the origin in the feature space.

Formally, given a set of training data x1, . . . , xl ∈ X , the problem consists

in finding a function f such that

f(x) = sign(〈w, φ(x)〉 − ρ ≥ 0

for most x ∈ x1, . . . , xl. This is achieved by solving the optimization problem:

w ∈ F, ξ ∈ Rl, ρ ∈ R
min

1

2
||w||2 +

1

θl

∑
i

ξi − ρ

subject to 〈w, φ(xi)) ≥ ρ− ξi, ξi ≥ 0

The model learned by the One-class SVM can later be used for binary clas-

sification: Given an instance x, the classification is obtained by calculating

sign(f(x)).

In the link prediction problem, all the instances from P may be used as

training data, all tuples from U may be used for evaluation later on.

In some preliminary experiments we found that the approach using One-

class SVM for training achieves very poor performance (about 50% accuracy

and F-measure for a binary classification where there were as many instances

from P as from U in the evaluation set). One possible explanation for this poor

performance is that the origin in the feature space is not a suitable representation

of the elements which are not part of the relation.

To improve on the method proposed so far, one option thus is to adapt the

classifier training such that it includes a better approximation of where samples

of the negative class should lie in the data space.

6.1.2 Link Prediction with Two-class SVMs

To overcome the problem of learning appropriate class borders for the relation,

negative training data is needed. As RDF has open-world semantics, not stating

that (s, o) ∈ p does not mean that (s, o) /∈ p, but that the membership status of

(s, o) with respect to p is unknown.

To get negative training data nonetheless, we make the assumption that a

tuple (s, o) is more likely to truly belong to p if (s, p, o) is part of the data graph

than if it is not stated explicitely. Using this assumption, we propose to use a

subset of the triples from U as negative training set, i.e. we randomly choose a

number of instances that are assumed to be negative for the training process.

Binary classifier training works best with stratified samples, i.e. if positive

and negative data are balanced in the data set. Therefore, as many positive as
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negative instances are used for the training. As relations are usually sparse in

RDF data, this number seems to give a good balance between the number of

assumptions made and the validity of the training data.

6.2 Kernel Functions for Links in RDF

Each kernel machine requires a suitable kernel function which compares in-

stances among each other.

Definition 44 (Link Kernel) Given two potential instances (s1, o1) and (s2, o2)

of a property p, the Link Kernel is defined as:

κ((s1, o1), (s2, o2)) = f(κs(s1, s2), κo(o1, o2))

where κs, κo are valid kernel functions. This means that the similarity of two

instances of a relation is determined by the similarity of the instances’ subjects

and the instances’ objects.

The advantage of the link kernel is the low complexity of calculating the

kernel matrix. Given a property p with d elements in the domain and r elements

in the range, there are dr instances in the relational learning problem. While a

classical kernel operating directly on the relation instances would require (rd)2

kernel computations, i.e. the complexity of calculating the whole kernel matrix

would be in O(r2d2comp(κ)) where comp(κ) is the complexity of calculating the

kernel function, using our approach only d2+r2 kernel function computations are

needed. The kernel matrix can thus be computed in O(r2d2 +(d2 +r2)comp(κ)).

Obviously, f has to be chosen in a way such that it is guaranteed that

the resulting function is a kernel function. The space of valid kernel functions is

known to be closed under sum, product and multiplication with positive scalars,

thus we can define the Sum Link Kernel and the Product Link Kernel as valid

kernel functions.

Definition 45 (Sum Link Kernel, Product Link Kernel) Given two ker-

nel functions κs and kernelo for RDF entities and α, β > 0, the Sum Link

Kernel is defined as:

f(κs(s1, s2), κo(o1, o2) = ακs(s1, s2) + βκo(s1, s2)

Accordingly, the Product Link Kernel is defined as:

f(κs(s1, s2), κo(o1, o2) = ακs(s1, s2) ∗ κo(s1, s2)

The importance of subject and object for the kernel value may be changed using

α and β.
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Any kernel function which is applicable to entities in an RDF graph is a can-

didate for usage in the kernel. We have presented a set of such kernel functions

in Chapter 5. Any of the kernel functions based on the intersection graph resp.

the intersection tree may thus be used as subject or object kernel in the Sum

Link Kernel and the Product Link Kernel.

6.3 Learning with Statistical Unit Node Sets

In the following, we will compare our approach to an alternative approach for

Link Prediction, namely the approach for learning with Statistical Unit Node

Sets (SUNS) proposed in Huang et al. (2010). Their model for link prediction is

based on a multivariate prediction problem, i.e. on a supervised problem where

the value of a set of variables is predicted at once.

Based on the available data, a data matrix is constructed. The rows of

this matrix are defined by the elements of the population under consideration,

e.g. the people working at a specific institute. The elements of the population

are called statistical units. The columns are defined based on the triples in

which a statistical unit participates. E.g., if a statistical unit is defined for

a person John, then any of the triples in which John occurs defines a feature

which takes the value 1 for John and any other statistical unit participating in

a triple of this pattern, 0 for any other statistical unit. An example feature is

(A,knows,Jane) which is 1 for any person knowing Jane. Additional attributes

are defined for patterns where one of the constants is replaced by a variable and

for the conjunction of a general triple pattern with a specific one. An example

of one of the latter patterns is (A,knows,B) and (B,hasIncome,High). The

obtained data matrix is pruned: any columns having ones in less than ε percent

of the data matrix or in more than 100− ε percent of the rows. The remaining

features are those whose values are predicted in the model.

The prediction is then obtained after matrix completion. Huang et al. (2010)

have proposed different methods which may be used for the matrix completion.

In our evaluations we have used singular value decomposition (SVD). The

approach for completing the matrix M is to decompose it into M = SUV

where U is a diagonal matrix. The completed matrix is obtained by setting all

but d of the entries of U to 0 and by then calculating M ′ = SU ′V .

6.4 Evaluation

We have evaluated our approach on two data sets and have compared it to

the approaches based on statistical unit sets. Our implementation is based on

libSVM (Chang and Lin, 2011) and uses the ν-SVM for training classifiers with

different parameter settings. For the Statistical Learning approach we use an
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implementation provided by the authors.

In this section, we will first present the evaluation methodology used, then

we will present each of the evaluation scenarios and the results we obtained from

them.

6.4.1 Evaluation Methodology

The open-world assumption does not only pose problems for choosing an ap-

propriate learning algorithm, but also in the evaluation of the learned model:

again, no negative data is available for testing the classifier.

Recall that for the training of the classifier we assumed that links that are

explicitely stated are more likely to be true than links that are not explicitely

stated. Our evaluation of link prediction methods is also based on this assump-

tion: Instead of using the models to obtain an explicit classification, we use

them to rank the data. The method is deemed to perform well if the positive

examples in the hold-out set are ranked higher than examples which are not

made explicit.

To obtain robust performance measures, we use 5-fold cross-validation in

all evaluation settings. These folds are obtained by splitting the positive data

into 5 parts of equal size. Each fold is then completed with as many negative

examples as positive examples are contained in the fold which are also used in

the training phase.

In total, 5 classifiers are trained, each using 4 of the folds for training. The

learned model is then evaluated using the 5th fold and all the negative elements

which are not part of any of the folds. The splitting of the data is visualized

in Figure 6.1. Note that this approach is generally applicable because relations

in RDF datasets are usually quite sparse, i.e. there are much more negative

examples than positive ones.

As evaluation measures, we use two ranking measures established in the

Information Retrieval literature: NDCG (Järvelin and Kekäläinen, 2000) and

bpref (Buckley and Voorhees, 2004). The general idea of ranking evaluation is

that a perfect ranking is obtained when all positive elements are ranked higher

than any negative element. The idea behind the NDCG is to punish negative

elements which are ranked higher than some positive ones by the position at

which the negative element occurs in the ranking. The bpref punishes negative

elements that are ranked higher than positive ones through the information how

many negative elements are ranked higher than a positive one. Figure 6.2 shows

an example ranking for instances of the foaf:knows relation in our example.

Definition 46 (NDCG) Given a ranking of instances, the Discounted Cumu-
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+ + + + + 

– – – – – 

Positive data 

Negative data 

Training Data 

– 
Negative data 
not used in  
training folds 

Test Data 

Figure 6.1: Illustration of the splitting of available data in training and test

folds

lative Gain (DCG) at position p is defined as

DCGp = rel1 +

p∑
i=2

reli
log2 i

where

reli =

1 a positive example is found at position i in the ranking

0 otherwise

The Normalized Discounted Cumulative Gain (NDCG) at position p is ob-

tained as

NDCGp =
DCGp
IDCGp

where IDCGp describes the Ideal Discounted Cumulative Gain and stands for

the DCGp obtained for the ideal ranking.

Calculating the NDCG for the maximal position in the ranking, i.e. for the

whole dataset yields a measure which has its highest value when all the positive

instances are ranked higher than the negative ones. It also takes into account

the positions at which the relevant data was found.

The second evaluation measure we are using, Bpref, was specifically designed

for evaluating rankings with incomplete information (Buckley and Voorhees,

2004):
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Figure 6.2: Example ranking of foaf:knows instances and NDCG and bpref

measures. The ranking is to be read from top to bottom, black boxes indicate

unknown instances, white boxes known instances.

Definition 47 (bpref) For a ranking with R relevant elements where r is a

relevant element and n is a negative element within the first R elements in the

ranking,

bpref =
1

R

∑
r

1− |n ranked higher than r|
R

Basically, the bpref counts how many negative resp. unjudged elements were

ranked higher than each of the positive elements in the ranking. The optimal

value of the bpref is 1, in the worst case it is 0.

6.4.2 Learning affiliations in the SWRC dataset

On this relatively small data set, the evaluation goal is an assessment of the

influence of different parameters on the learning result.

The evaluation uses the data from the SWRC ontology (Sure et al., 2005)

and the metadata which is available in the Semantic Portal of the institute

AIFB. The same dataset has been used for evaluations in Chapter 5. The

ontology models key concepts within research communities, among them people,

publications, projects and research topics. The evaluation data consists of 2,547

entities of which 1,058 can be derived to belong to the person class. 178 of these
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Kernel configuration Evaluation Results

Kernel Inst.depth α/β ν/Dimensions NDCG bpref

SUNS-SVD 10 0.7455(± 0.0384) 0.3034(± 0.0569)

SUNS-SVD 20 0.8022(± 0.0606) 0.3844(± 0.0661)

SUNS-SVD 30 0.7293(± 0.0836) 0.3364(± 0.0953)

SUNS-SVD 50 0.6524(± 0.0683) 0.2558(± 0.0479)

SUNS-SVD 100 0.5609(± 0.0834) 0.1958(± 0.0570)

Common Subtrees 2 1 0.1 0.4241(± 0.0761) 0.0283(± 0.0004)

Common Subtrees 2 1 0.2 0.5108(± 0.2274) 0.2060(± 0.3482)

Common Subtrees 2 1 0.3 0.7409(± 0.2714) 0.5478(± 0.4192)

Common Subtrees 2 1 0.4 0.9467(± 0.0252) 0.8357(± 0.0639)

Common Subtrees 2 1 0.5 0.9340(± 0.0209) 0.8438(± 0.0743)

Common Subtrees 2 1 0.6 0.9390(± 0.0218) 0.8360(± 0.0648)

Common Subtrees 2 1 0.7 0.9446(± 0.0212) 0.8284(± 0.0584)

Common Subtrees 2 1 0.8 0.9416(± 0.0487) 0.8119(± 0.1255)

Common Subtrees 2 1 0.9 0.9572(± 0.0308) 0.8644(± 0.0865)

Table 6.1: Evaluation Results for Link Prediction on SWRC dataset with 95%

confidence intervals

persons are affiliated with one of the research groups at AIFB, 78 of them being

currently employed. Additionally, there are 1232 instances of type publication,

146 instances of type research topic and 146 instances of type project. The

entities are connected by a total of 15,883 relations among them. Additionally,

there are 8,705 datatype properties, i.e. properties linking an entity to a literal.

In the evaluation we are learning the affiliation relation. Note that this

setting has been used in other evaluations (see Chapter 5 and Bloehdorn and

Sure (2007)), however there the setting was to learn a classifier which would

decide given a person which research group this person should belong to. Our

goal here is slightly different. Given a tuple consisting of a person and a research

group, the goal consists in deciding whether this tuple is part of the affiliation

relation and hence whether the person is affiliated with the given group.

Our results (see Table 6.1) show that the kernel-based approach can achieve

significantly higher NDCG and bpref values than the approaches based on ma-

trix completion. When analysing the results of the matrix-based approaches we

found that in some cases no probability value could be assigned to a possible

link. We assume that this is because the respective rows of the data matrix were

pruned during the training process. This also explains the relatively low bpref

of the matrix-based approaches: any positive element of the test set for which

no classification can be found is ranked lower than any of the negative instances

in the test set for which a prediction is found.

The results of the Subtree Kernel indicate that the results of the classification

improve with growing trade-off factor ν. This means that our models improve

when the model complexity is increased which means that even the complexest

models that were learned with our approach generalize well and do not suffer

from overfitting the data. It therefore seems that in the proposed feature space
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Kernel configuration Evaluation Results

Kernel Inst. depth α β NDCG bpref

Common Subtrees 2 0.5 1 0.9316(± 0.0182) 0.8363(± 0.0654)

Common Subtrees 2 1 1 0.9340(± 0.0209) 0.8438(± 0.0743)

Common Subtrees 2 2 1 0.9548(± 0.0314) 0.8538(± 0.0857)

Common Subtrees 2 3 1 0.9271(± 0.0607) 0.7831(± 0.1570)

Common Subtrees 2 5 1 0.8387(± 0.1135) 0.6313(± 0.2863)
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Figure 6.3: Influence of the quantity α/β on the classification result, 95% con-

fidence intervals in parentheses

the elements of the relation are well separated from but close to the negative

instances. This is also supported by the high variance of the models learned

based on a ν-value of 0.2 or 0.3.

We have analysed the influence of the relation between parameters α and β

on the result (see Figure 6.3). In the case presented here, optimal results were

obtained for α/β = 2. However, in the given application scenario, there are only

few possible objects of the relation. It is therefore intuitive that the similarity

of the subjects should have higher impact on the classification.

6.4.3 Learning friendships in Livejournal data

In the second evaluation setting we studied features of a larger data set and a

relation which is quite different from the affiliation relation in the SWRC

dataset. In a dataset which has been extracted from the social network site

LiveJournal1 we attempt to learn the foaf:knows relation. A similar dataset

has been used for evaluations in Chapter 5, however, here we only use a subset

1http://www.livejournal.com
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Class Instances

Person 638

Age 4

Location 200

School 747

OnlineAccount 5

BlogActivity 5

Table 6.2: Statistics on the LiveJournal dataset

System configuration Evaluation Results

Kernel Inst.depth α β ν/Dimensions NDCG bpref

SUNS 20 0.7871(± 0.0101) 0.2889(± 0.0175)

SUNS 50 0.7410(± 0.0071) 0.2191(± 0.0075)

SUNS 100 0.6847(± 0.0022) 0.1446(± 0.0043)

Common Subtrees 2 1 1 0.1 0.9397(± 0.0100) 0.8085(± 0.0271)

Common Subtrees 2 1 1 0.2 0.9746(± 0.0019) 0.9149(± 0.0073)

Common Subtrees 2 1 1 0.3 0.9736(± 0.0029) 0.9135(± 0.0063)

Common Subtrees 2 1 1 0.4 0.9712(± 0.0040) 0.9072(± 0.0079)

Common Subtrees 2 1 1 0.5 0.9886(± 0.0137) 0.9680(± 0.0394)

Common Subtrees 2 1 1 0.6 0.9794(± 0.0071) 0.9066(± 0.0079)

Common Subtrees 2 1 1 0.7 0.9828(± 0.0070) 0.9186(± 0.0143)

Common Subtrees 2 1 1 0.8 0.9895(± 0.0059) 0.9422(± 0.0273)

Common Subtrees 2 1 1 0.9 0.9916(± 0.0079) 0.9580(± 0.0362)

Table 6.3: Evaluation Results for Link Prediction on Livejournal dataset with

95% confidence intervals

of the dataset described there. The main difference between the two scenarios

besides the size of the dataset is the number of elements in the range of the

property: while in the SWRC dataset only 5 elements were in the range of the

learned property, here there are as many objects in the domain as in the range

of the property.

Our dataset consists of descriptions of 638 people and their friendship re-

lations. Overall, there are 8069 instances of the foaf:knows relation. Addi-

tionally, the dataset contains information on the people’s location, schools they

attended, other online accounts they hold etc. The data set was cleaned and

some of the relation values, like those for the age relation were aggregated.

Overall statistics of the dataset are listed in Table 6.2. In total, there are 3040

nodes and 15907 relations in the dataset. The average node degree is 5.2326.

The results obtained on this dataset confirm our findings for the Semantic

Web Research Community (SWRC) dataset: our approach leads to significantly

better results than the matrix approaches. The relatively low bpref of the matrix

completion approaches indicate that no classification was obtained for some of

the positive elements of the test set. Again, our results improve with a growing

trade-off parameter ν in the support vector machine, thus indicating the good
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Kernel configuration Evaluation Results

Kernel Inst. depth α β NDCG bpref

Common Subtrees 2 0.5 1 0.9724(± 0.0038) 0.9056(± 0.0054)

Common Subtrees 2 1 1 0.9886(± 0.0137) 0.9680(± 0.0394)

Common Subtrees 2 2 1 0.9694(± 0.0186) 0.8948(± 0.0245)

Common Subtrees 2 3 1 0.9741(± 0.0066) 0.9006(± 0.0085)

Common Subtrees 2 5 1 0.9744(± 0.0055) 0.8945(± 0.0078)
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Figure 6.4: Influence of the quantity α/β on the classification result, 95% con-

fidence intervals in parentheses

separation of positive and negative examples in the training set.

We have also analysed the influence of the relation between α and β on the

classification result (see Figure 6.4). On this dataset the best results are achieved

when subject and object similarity get equal importance. The foaf:knows

relation has as many potential subjects as objects. It is therefore natural that

the object should have more influence on the classification than in the case of

the affiliation relation which only has a very limited number of objects.

6.5 Related Work

Link Prediction is a problem which has previously been studied not only in

the context of RDF data (see Getoor and Diehl (2005) for an overview). An

important application of Link Prediction is the recommendation of links in social

networks (Liben-Nowell and Kleinberg, 2003; Yin et al., 2010).

Applications of Link Prediction to Semantic Web data have only recently

been studied. Besides the SUNS approach (Huang et al., 2010) to which we
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have compared our approach, Rettinger et al. (2009) have also proposed the

application of Statistical Relational Learning methods to this problem. Their

approach allows for the integration of hard constraints made available through

an ontology into the Infinite Hidden Relational Model (Xu et al., 2006).

Kernel-based methods for Link Prediction in the context of Semantic Web

data have been proposed by Bicer et al. (2011). They define so-called clause

kernels which each use a single triple pattern as feature. These clause kernels

are then combined into a global kernel function. The optimal weights for the

clause kernels are learned through a combination of the classical SVM training

algorithm with genetic algorithms. This means that an adaptation of the learn-

ing algorithm is required in their approach, while our approach can be used with

any kernel machine and is thus also applicable to other scenarios where learning

from links is desired.

6.6 Conclusion

In the context of semantic data which is described by an underlying graph

structure, link prediction, i.e. learning whether a link of a specific type should

exist between two entities of interest, is one of the most important learning

problems.

In this chapter, we have proposed an approach for adapting entity classi-

fication approaches to the link prediction problem. We have instantiated our

general method using the entity kernel functions proposed in Chapter 5.

The proposed link prediction method has been evaluated in two evaluation

settings and compared to matrix-based multivariate prediction methods. We

could show that our approach outperforms these approaches.
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Chapter 7

Knowledge Base Updates

7.1 Introduction and Motivation

One aspect of Ontology Refinement is the need for maintaining the informa-

tion in a way such that the domain model is consistent with the underlying

domain. This requires new information to be added when it becomes available,

to detect the implications of new information on the current data and to find

those statements that should be changed due to the newly added information.

Furthermore, new information may allow for the inference of additional informa-

tion that is not expressed explicitely, which may also be added to the knowledge

base.

As of now, little support for these problems is available. However, by pro-

viding suitable support in form of a partial automation of the update process

would facilitate updating a knowledge base in a way that keeps it consistent

with the domain and within itself and to find interdependencies between the

data more easily. Additionally, the update process could be made more easy to

handle (requiring less expertise) and more efficient.

To address this problem, we have developed a mechanism for ontology and

knowledge base updates, which enables the automatic handling of frequently

recurring updates. An example for this kind of updates is a research domain

where the employees of a research group, their projects, publications and super-

visor relationships are modelled. A recurring update in this setting is a person

finishing her PhD thesis. The changes required to turn a PhD student into a

Post-Doc in the knowledge base are similar for every person. Thus, they may

be taken care of in the same way. Other examples are people joining or leaving

the research group.

The method we propose is in general applicable in an automatic or a semi-

automatic way. In very clearly structured domains, it may be sufficient to trigger

the change mechanism with some parameters and the update can be performed

101
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Figure 7.1: Sample from the research community ontology

automatically. In other cases, in which the changes are more ambiguous the

change mechanism may be used in an interactive way which allows the user to

determine the single changes which are applied to the ontology.

Throughout this chapter, we will motivate our design choices and implemen-

tation details based on a running example. Consider an ontology which models

a research community, projects and supervisor relationships. A sample from

this ontology is given in Figure 7.1. We consider the case of somebody - in the

example philipp - leaving the institution. This means that the type of event is

LeaveInstitution. In the case that somebody leaves the institution the person

should not be affiliated with this institution anymore and she should not work

on any projects there any longer. As explained above, we aim at defining a

system which performs these changes automatically once it is known that the

person has left the institution.

The remainder of this chapter is structured as follows: in Section 7.2 we in-

troduce the notion of Ontology Updates and distinguish it from related domains

such as Ontology Revision, Section 7.3 explains our design choices when working

out the overall and more detailed aspects of an ontology update language. In

Section 7.4 we briefly sketch the architecture of a system where ontology up-

date specifications are employed. Section 7.5 provides the formal specification

of our proposed Ontology Update Language. In Section 7.6 the benefits of our

approach will be illustrated by means of a small example. In Section 7.7 we

will present an interactive extension of our approach. Section 7.9 describes the



7.2. ONTOLOGY UPDATE SUPPORT 103

details of our reference implementation of an according ontology update system

, before we conclude and provide directions for future research in Section 7.10.

7.2 Ontology Update Support

The comprehensive modeling of complex domains requires domain knowledge

and ontology modelling expertise. As few people have both, ontologies are

rarely developed by a single person starting from scratch. Rather collaborative

design and development of ontologies and continuous refinement are the usual

scenarios for which elaborate methodologies and appropriate tool support are

crucial (see for example (Tudorache et al., 2008; Tempich et al., 2007)).

In this spirit, ontology change is a fundamental issue to be addressed. On-

tology Changes may occur for various reasons (see Chapter 4). One reason for

changing the ontology is a change in the underlying domain. We called these

changes Ontology Updates.

Ontology Updates may be identified by answering the question

Is the ontology changed due to an according change in the described domain?

Note that there are many cases where the answer to that question would be

no: an ontology change might be the consequence of the discovery of modeling

errors (ontology repair) or the acquisition of new additional domain knowledge

(ontology refinement). Obviously, the latter type of ontology changes reflects a

change in the way the modeler conceives or formalizes the domain of interest.

As an example, consider the case that new findings in genetics might imply that

the taxonomy of living beings has to be corrected in order to properly reflect the

current knowledge of the real situation. A lot of research has been devoted to this

kind of ontology change (employing techniques from belief revision, knowledge

acquisition, ontology learning and ontology evolution to name just a few, see

Chapter 4 for an overview).

As opposed to those, we will be concerned with the task that we refer to as

(temporal) ontology update: changes to the ontology might become necessary

as the underlying domain changes over time. As time passes, the state of af-

fairs in the domain like a person’s employer or her academic title may change.

While this kind of changes will mostly concern assertional knowledge, they may

also concern the schema. As an example consider EU membership: it is ex-

pected that additional countries become member of the EU, thereby changing

the terminological definition of the class representing the European Union. The

term ontology update is thus used in the sense of literally keeping an ontology

up-to-date.

In many cases it will be possible to come up with change patterns which

describe typical ways in which a domain may evolve. For example, a domain
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individual recorded as underage may turn into an adult, while the opposite is

impossible. This example illustrates that change patterns are domain specific

and depend on the intended semantics of the involved domain entities: on the

abstract structural level, both Child and Adult are just classes and hence on

par with each other.

While most of these patterns will probably deal with the update of asser-

tional knowledge, they may also occur on the schema level (as an example con-

sider a country becoming member of the EU). While here we focus on change

patterns that reflect temporal and domain-specific changes, we are aware that

such patterns may be identified beyond this use case (our approach may thus

be applicable in other change scenarios, too).

The observation that such change patterns exist leads to the idea to formally

specify typical ways in which an ontology may be updated over time. As an

example, in a biological domain, an individual might cease to be member of the

class Caterpillar and become member of the class Butterfly instead. These

update specifications may concern schema knowledge as well as fact knowledge.

On a more general level, update specifications allow to encode process knowl-

edge and associate it with the ontology, such that it can be used for updates.

Thus, by adding change patterns to the ontology, a dynamic domain model may

be obtained: while the ontology describes the state of the domain, the change

patterns describe how the model may evolve in the future.

The specifications can be seen as operational descriptions how to update an

ontology as a consequence to information entered into the system. However,

in contrast to common Ontology Evolution approaches (Stojanovic, 2004), we

propose to base those updates on domain specific knowledge about temporal

changes. Using the above mentioned information, a natural reaction to asserting

that an individual willie is now a class member of Butterfly would be to also

retract the information that willie is an instance of Caterpillar (Carle, 1969).

This way, an ontology change requested by a person responsible for ontol-

ogy maintenance can be supplemented by additional changes. This allows to

prevent modeling flaws that might occur due to only partially entered informa-

tion. Generally, an ontology update specification allows constraining ontology

changes to clearly defined, foreseen cases in a domain-specific way.

Then, less knowledge of the concrete formalization of the domain is needed in

order to make updates, as it is sufficient to trigger an update specification for a

specific kind of change without knowing all the implications the change may have

on other parts of the ontology. Thus, frequent maintenance or update tasks can

be transferred from knowledge engineers (roughly: the“ontology administrator”)

to knowledge workers (possibly formally less skilled users in charge of monitoring

changes in the domain of interest and transferring them into the ontology) while

minimizing the risk of introducing errors. In our example, it would be sufficient
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that somebody enters the information that philipp is not affiliated with the

aifb anymore into the system, all additional changes that are necessary will be

determined by the system. It is not necessary that the person entering the new

knowledge in the ontology is familiar with the formalisation of the domain.

Like the actual ontology, the according update specification has to be created

by a knowledge engineer who is also in charge of ontology refinement activities as

well as addressing unforeseen changes not anticipated by the update specification

that might become necessary.

7.3 Design Choices

In this section, we review the major choices and questions to be addressed when

designing a framework for ontology update management.

7.3.1 Ontology-inherent Temporal Knowledge vs. Exter-

nal Specification

One approach to capture temporal changes in a domain is to use logic for-

malisms that allow for their description inside ontological specifications. There

is a plethora of formalisms and approaches such as temporal logics (see (Lutz

et al., 2008)) or situation calculi (Levesque et al., 1998) that provide a logic-

inherent way of describing temporal and dynamic phenomena in the domain.

Clearly, these approaches have advantages whenever the intended use of the on-

tology includes reasoning over domain changes (maybe even planning). However,

besides the more complicated formalisms, a usual drawback of such formalisms

is the high reasoning complexity.

Using such a formalism would mean to include temporal axioms such that

a person has a specific type until another type is assigned. In our example an

axiom could define that a person is a PhDStudent until she has published a

PhD thesis.

Note that our goal is much more moderate: from the above described, it

becomes clear that we aim at designing an operational formalism that – given

a change request – deterministically comes up with an updated ontology in a

timely manner. Moreover, we would like to stick to the usual approach that an

ontology encodes a static description of the domain, hence every state of the

actual ontology should be considered a kind of “snapshot”.

Therefore, we adopt an approach keeping the actual ontology and the ac-

cording update specification distinct, which also enables the use of off-the-shelf

reasoners for dealing with the ontology part.

This means that the formalism describing the updates is not part of the on-

tology itself but outside of it. The ontology stays as is and is associated with an
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external specification which contains descriptions of the types and effects of up-

dates. In our example this external description contains a specifications of kind

LeaveInstitution which specifies that when somebody leaves an institution

she also stops working on projects there.

An additional advantage of specifying changes externally is that standard

tools for ontology management may be used instead of special implementations

for non-standard formalisms.

7.3.2 Unguided Belief Revision vs. Guided Update

Although most of the work done in the area of belief revision has dealt with

scenarios of ontology refinement (see (Konstantinidis et al., 2008) for an RDFS-

based formal framework and (Qi and Yang, 2008) for a survey), some proposals

have been made to also address the update scenario (Katsuno and Mendelzon,

1992).

Notwithstanding, belief revision approaches try to resolve inconsistencies

that were introduced by an update. However, many changes in the ontology

will not lead to an inconsistent state, thus no additional changes are performed.

Therefore, the applicability of belief revision is restricted to formalisms ex-

pressive enough to cause inconsistencies. While this is certainly the case for

OWL, causing “meaningful” inconsistencies in RDF(S) is virtually impossible.

More precisely: in RDF(S) inconsistencies can only be provoked by so-called

XML-clashes, which is more a datatype-related unintentional peculiarity than

a design feature. To a certain extent, this fallback can be mitigated by adding

additional constraints beyond RDF(S) on top of an RDF(S) knowledge base

As another downside of belief revision, note that the strategies to restore

consistency do not take domain specifics into account. To illustrate that, con-

sider the following example: let a knowledge base contain the disjointness of the

classes Adult and Child and the fact that Peter belongs to the class Child. If

we now add that Peter is also an instance of the class Adult, the knowledge

base becomes inconsistent and (if configured appropriately) a belief revision ap-

proach would retract Child(Peter), as newly added facts override those already

present. While this is the desired behavior, re-adding Child(Peter) to the new

knowledge base would lead to the deletion of Adult(Peter) irrespective of the

actual irreversibility of this development in the described domain. Clearly, a

more appropriate “reality-aware” reaction of an update mechanism would be to

reject the second change request.

As opposed to belief revision, our approach aims at preventing inconsistent

ontology states that might arise from incomplete change requests. To this end,

change requests are completed by further ontology changes based on specified

knowledge about how a domain may develop. This way, consistency can be pre-

served; as a worst case, the change request can be denied. E.g., in our example,
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the request for removing philipp hasAffiliation aifb does not lead to an

inconsistency. However, the state of the ontology if only this statement is re-

moved is an unintended one as people should not work on projects at institutions

they are not affiliated with.

Note however, that those two approaches are not mutually exclusive but

could be combined: in case of a change request not matching any of the an-

ticipated update patterns, applying a belief revision “fallback solution” may be

preferable to simply rejecting the request.

7.3.3 Syntactic vs. Semantic Preconditions

In most cases, the best way to react to a change request will depend on the

current state of the ontology. Hence it is crucial to provide the opportunity to

formulate respective preconditions for triggering changes. There are essentially

two distinct kinds of checks that can be done against an ontology: semantic and

syntactic ones (this distinction has been proposed by Vrandečić (2010), however

what we call syntactic here is called structural there).

If some changes should be made depending on the validity of some state-

ment in the ontology, we have to employ reasoning in order to decide whether

the statement is logically entailed by the given information. As a special case

of this, one could diagnose whether an intended change would turn the ontol-

ogy inconsistent and reject the requested change on these grounds. Semantic

checks provide the more thorough way of testing the knowledge contained in an

ontology, however the reasoning to be employed may be expensive with respect

to memory and runtime.

The alternative would be to just syntactically determine whether certain

axioms are literally contained in a knowledge base. This would be less expen-

sive than the semantic approach. Yet usually, there are many possible ways

to syntactically express one piece of semantic information making a näıve syn-

tactic “pattern matching” approach problematic at best. One way to mitigate

that problem while still avoiding to engage in heavy-weight reasoning would be

to syntactically normalize the ontology and the change request. That is, the

ontology is transformed into a semantically equivalent, but syntactically more

constrained form, facilitating to identify and manipulate pieces of semantic in-

formation by purely syntactic analyses (of course, this does not make reasoning

superfluous, but it can at least be avoided in some cases).

Since both kinds of preconditions are useful under different circumstances,

we argue that an ontology update formalism should offer both options leaving

to the knowledge engineer to decide which one should be used in a specific

case. However, in our actual proposal, we refrain from taking a purely syntactic

approach, but rather the structural level of the RDF graph that is used by

SPARQL.
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7.3.4 Transparency

We think that an update mechanism should be transparent for classical ontol-

ogy modelling tools. Thus, the ontologies which have an update formalization

attached can be processed by ontology tools such as reasoners which are not

built for automatically processing updates.

There are two advantages of this design decision: first, no special modelling

features are needed, but the domain model can be defined using classical ontol-

ogy languages. The update specification is external to the ontology itself and

can be processed by tools that are dealing with this aspect. However, simple

direct updates remain possible in cases where the ontology is processed by tools

other than an update processing tool. Thus, no special tools are needed for

tasks not related to the update specification and execution. Secondly, existing

ontologies may be amended with update specifications without changing the

environment in which they are used.

Another aspect with respect to which we propose transparency is with re-

spect to the formalism used for stating updates. It is thus possible to issue the

same change requests as when no update specification is available. If the user or

the external tool changing the ontology is not aware of the update mechanism

being in place, it may completely ignore its output. In the case of RDF, this

means that updates should be stated using SPARQL update. In case no update

mechanism is implemented the change request philipp hasAffiliation aifb

only removes this exact triple. If however the update mechanism is available,

the triples stating that philipp leads resp. works on projects and supervises

students at AIFB are also removed.

7.3.5 Change Feedback

It has to be expected that the changes mediated by an ontology update speci-

fication might not be directly obvious for the knowledge worker. However, it is

clearly crucial to ensure that the system’s behavior is as comprehensible as pos-

sible to the knowledge worker. For this reason, feedback about the automated

reactions to a change request should be an essential part in any practically

employable ontology update framework.

In order to provide informative feedback, the ontology engineer has to pro-

vide template-like explanation snippets commenting on the nature of the change

patterns contained in the update specification and the changes triggered by

them. At runtime, those templates instantiated with the actually changed on-

tology elements can be presented to the knowledge worker in order to explain

what actually happened to the ontology. In our running example the knowledge

worker applying the change should obtain information on which statements were

removed additionally, e.g. a message like this:
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Figure 7.2: Ontology Update Architecture

Philipp does not work at AIFB anymore.

Thus, he does not lead xmedia anymore.

He has stopped working on multipla.

Thanh is not supervised by Philipp anymore.

As the knowledge worker may not be well acquainted with the concrete

formalization of the domain, it may be advisable not to output the changed

statements directly but to also give an explanation as to why a triple is changed.

For example, in the case of someone leaving an institution, a useful output could

be that the person is no longer working on any project at the institution before

listing the changes that occur due to that condition.

7.4 System Architecture

In this section, we propose an abstract architecture for an ontology update

framework taking into account the design choices made in the previous sec-

tion. A concrete instantiation of this architecture is described in the subsequent

sections. The suggested architecture is sketched in Fig. 7.2.

Therein, the usual unguided interaction mode of committing changes di-

rectly to the ontology is complemented by an additional update management

component as editing interface for the knowledge worker. Still, the knowledge

engineer will be able to directly change and refine both the ontology and the

ontology update specification.

The typical work flow of an ontology update step is carried out as follows:

Initially, the knowledge worker issues a change request by providing a piece of
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knowledge to be added to or deleted from the ontology.

A change request will only be acted upon if the accompanying Ontology

Update Specification accounts for it. The Ontology Update Manager will scan

the Update Specification for an update rule whose applicability conditions are

satisfied by the uttered change request and the ontology. Those applicability

conditions might contain syntactic as well as semantic checks. If there are several

applicable update rules, only one of them is applied (in our implementation the

one that was first registered with the Ontology Update Specification).

If an applicable update rule has been determined, the change request can be

acted on accordingly by denying or accepting it but possibly also by carrying

out more ontology changes than explicitly requested. In the present version this

happens automatically without additional explicit approval of these additional

changes.

Finally, a feedback message describing the activated change pattern and

containing the actually performed changes is generated and sent back to the

knowledge worker.

In our implementation the change request is denied if no applicable update

specification is found. It is however logged such that the ontology engineer

can take care of it later and also refine the Ontology Update Specifications if

needed. In case there are several matching update rules, the first matching rule is

triggered. The ontology engineer thus has to take care in which order the update

rules are specified. It may however be envisioned to give the knowledge worker

the choice between several update specifications if more than one specification

matches the given request.

The proposed framework is inspired by database triggers as e.g. described

in the SQL standard (Date and Darwen, 2008). Database triggers are stored

procedures that are activated by changes that are submitted to the database.

They may be defined for insertions, updates and deletions of instance data in

the database. Our approach provides the same kind of functionality for instance

data in ontologies while additionally allowing for defining update specifications

for schema changes, which is usually not possible with database triggers.

In general, database triggers can be specified to be executed before or after

committing the submitted change. While we do not offer this possibility, we

offer the possibility to activate changes based on entailments after the change

has been applied, thereby allowing changes to be performed based on what will

be changed in the ontology. To evaluate these conditions the ontology obtained

by directly applying the requested change (without the additional changes) is

evaluated.

Effects of the update specification might depend on when the change is per-

formed (before or after the other actions specified in the update specification).

We therefore decided to give maximum flexibility to the ontology engineer by
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CREATE CHANGEHANDLER <name>

FOR <changerequest>

AS

[ IF <precondition>

THEN ] <actions>

<changerequest> ::== add [unique] (<SPARQL>)

| delete [unique] (<SPARQL>)

<precondition> ::== contains(<SPARQL>)

| entails(<SPARQL>)

| entailsChanged(<SPARQL>)

| (<precondition>)

| <precondition> and <precondition>

| <precondition> or <precondition>

<actions> ::== [<action>]|<action><actions>

<action> ::== <SPARQL update>

| for( <precondition> ) <actions> end;

| feedback(<text>)

| applyRequest

<SPARQL> ::== where clause of a SPARQL query

<SPARQL update> ::== a modify action (in SPARQL Update)

<text> ::== string (may contain SPARQL variables)

Figure 7.3: Ontology Update Language syntax specification in BNF.

having him specify when the submitted change should be executed. To make

this possible, we decided not to execute the submitted change at all. Instead it

has to be specified in the update specification when the change is to be applied.

7.5 A Language Proposal

In this section, we instantiate our previous general considerations by provid-

ing an ontology update framework based on RDF(S) and SPARQL, as well as

SPARQL Update. This framework consists of the syntax of the Ontology Up-

date Language (OUL, specified in Fig. 7.3) together with the precise description

how ontology change requests are to be handled by the ontology management

component (see Algorithm 6).

Every update rule (also called changehandler) has an identifier. It carries a

change request pattern, expressing for which change request it can be applied

and some preconditions that define whether a change request can be handled by

this rule depending on the current ontology state. If several matching change-

handlers exist, the first one occurring in the update specification will be applied.

We are aware that we thereby deviate from pure declarativity. However, for a

first proposal, this kind of implicit priority declaration seems both intuitive and
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computationally feasible.

A change request pattern is defined by the WHERE-clause of a SPARQL select

query that is to be evaluated on the change request. That means that the state-

ments submitted for a change are interpreted as an RDF graph and it is checked

whether the change request pattern executed as SPARQL query yields any (or,

if the unique option is set: exactly one) result on this change graph (lines 4 –

6 in Algorithm 6). The result of this query are bindings of all variables that

are present in the WHERE-clause. Those bound variables can be reused later in

the preconditions and actions part. Using SPARQL for describing changes leads

to the transparency that we have discussed to be useful. If no Ontology Up-

date Specification is available the changes can be handled by a regular SPARQL

endpoint.

If a match is found, the precondition of the changehandler is evaluated. This

determines whether the changehandler is applicable or whether another match-

ing one has to be found. There are three basic types of preconditions: a syntactic

check (that simply verifies whether certain triples are contained in the ontol-

ogy) is performed via contains. Semantic entailment checks may be performed

on the ontology in its current, unaltered state (entails) or on the “hypothet-

ical” ontology that would result from carrying out the changes as requested

(entailsChanged). As explained above, it is desirable to provide syntactic and

semantic checks on the ontology, as syntactic checks are less expensive but also

less accurate than semantic checks. Syntactically, basic preconditions are also

the WHERE-part of a SPARQL query.

Basic preconditions can be combined by and and or. As it is reasonable to

allow for (yet unbound) variables to occur in several basic preconditions, the

and- resp. or-operators are realized as join and union on the result sets of the

basic preconditions. In the end, a precondition is considered to be successful

(line 8) if its result set contains at least one entry. Before evaluation of the

precondition, all variables that occurred before in the change request pattern

are substituted by their binding (line 7, in the case of several existing bindings,

the first one is chosen).

If the precondition is evaluated successfully, the actions specified in the

changehandler’s body are applied to the ontology. It is up to the knowledge

engineer what should be done with change requests for which no matching

changehandler is found. This can be done by specifying a changehandler which

matches any change request.

As for the evaluation of preconditions, all variables occurring in the action

part of the changehandler that were bound before (i.e. that were present in

either the change request or in the precondition) are replaced by their binding

before the action part is applied (line 16). If several possible bindings were

found for the change request or the precondition, the first binding is chosen.
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Elementary actions that can be carried out are knowledge base changes (ex-

pressed as SPARQL Update operations), the applyRequest action (carrying

out the originally uttered change request), and feedback messages. Moreover,

elementary actions can be nested into loops which iterate over the result set of a

precondition. While executing the action part of a changehandler, the activated

ontology changes are not directly applied but first assembled in a list (line 17)

and applied thereafter. This way all the loop preconditions are evaluated against

the original ontology (or, in the case of entailsChanged, against the ontology

that has been altered in the initially proposed way), thereby preserving a declar-

ative flavor. The application of the changes is done in an atomic manner after

all necessary changes have been determined.

As it would not be easy to ensure termination or avoid high computational

cost if the actions part of a change request was allowed to trigger other change

requests, no other changehandlers are triggered during the execution of a change-

handler. While this ensures termination, it makes the ontology engineer respon-

sible for“manually”handling all additional changes that might become necessary

due to the changes during the execution of the changehandler.

As a preliminary solution, the association of changehandlers with an ontology

works similar to the association of DTDs with an XML document (Bray et al.,

2008). They can either be defined inline in the document specifying the data

or they can be defined in external files. In either case, the changehandler is

defined in a comment (such that the RDF file can also be parsed by ontology

management systems that do not support OUL). All comments that have an

extra ’-’ at the beginning are parsed as changehandler definitions. This begin

of the comment may be followed by a file name enclosed in quotation marks,

which defines an external changehandler, or by the definition of a changehandler

enclosed in square brackets, defining the changehandler inline.

7.6 Examples

In this section, we provide a set of examples aimed at both advocating the

potential usefulness of our proposed update framework and demonstrating the

concrete work flow.

7.6.1 Running Example

We start with the knowledge base from Fig. 7.4 which is equivalent to the RDF

graph presented in Figure 7.1. Additionally, an update specification for the

ontology is available which contains the definition of a change handler which

is used for processing events of type LeaveInstitution and authorsPhD (see

Fig. 7.5). The first changehandler therein deals with the case that somebody

leaves his/her current affiliation. In that case, the deletion of the affiliation
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philipp rdf:type PhDStudent .

philipp hasAffiliation aifb .

philipp leads xmedia .

philipp worksOn multipla .

philipp supervises thanh .

thanh rdf:type PhDStudent .

thanh hasAffiliation aifb .

thanh worksOn xmedia .

xmedia rdf:type Project .

xmedia assocInstitution aifb .

multipla rdf:type Project .

multipla assocInstitution aifb .

Figure 7.4: Example knowledge base.

information has to trigger further changes: the person will not continue to

lead projects at the institution he/she leaves nor to supervise persons. Now

suppose the following change request, indicating that Philipp is leaving the AIFB

institute, is entered into the system: delete data {philipp hasAffiliation

aifb .}

The system will now check whether this change request matches the first

changehandler’s change pattern del { ?x hasAffiliation ?y }. This is the

case, as the corresponding SPARQL query yields a result which binds philipp

to ?x and aifb to ?y.

The considered changehandler is now executed as it does not contain fur-

ther preconditions for activation. So, the specified actions will be carried out:

applyRequest means that the initial change request is granted and added to

the list of updates to be executed. After that the following message is displayed:

philipp is no longer affiliated to aifb.

Next, we consider the graph pattern in the first loop. Note that it contains

variables that have already been bound by the change pattern matching. Before

evaluating the loop action, those variables are substituted by their bindings, in

our case resulting in the following rewritten loop action:

for(contains(philipp ?wol ?z . ?z rdf:type Project .

?z assocInstitution aifb .

FILTER(?wol=worksOn || ?wol=leads)))

delete data {philipp ?wol ?z};

feedback("philipp does not lead/work on project ?z anymore"); end;

Now, the conditional part of the rewritten loop action is matched against the

database, yielding the following two variable bindings: ?wol7→leads, ?z7→xmedia



7.6. EXAMPLES 115

CREATE CHANGEHANDLER leavesInstitution

FOR del { ?x hasAffiliation ?y }

AS applyRequest;

feedback("?x is no longer affiliated to ?y");

for(contains(?x ?wol ?z . ?z rdf:type Project .

?z assocInstitution ?y .

FILTER(?wol=worksOn || ?wol=leads)))

delete data {?x ?wol ?z};

feedback("Thus, ?x does not lead/work on project ?z anymore."); end;

for(contains(?x supervises ?z . ?z hasAffiliation ?y))

delete data {?x supervises ?z};

feedback("Thus, ?x does not supervise ?z anymore"); end;

CREATE CHANGEHANDLER authorsPhD

FOR add { ?x swrc:authorOf ?y }

AS IF entailschanged( ?y rdf:type swrc:PhDThesis . )

THEN applyRequest;

delete data { ?x rdf:type swrc:PhDStudent};

feedback("Change accepted. ?x authored a PhDThesis,

so he is no PhD student anymore.");

Figure 7.5: Example ontology update specification.

and ?wol7→worksOn, ?z7→multipla. Next, for each of these two bindings, the

subsequent actions are executed: therefore, the triples philipp leads xmedia.

and philipp worksOn multipla. are scheduled for deletion and the following

two messages are prompted to the user:

Thus, philipp does not lead/work on project xmedia anymore.

Thus, philipp does not lead/work on project multipla anymore.

In analogy to that, by executing the second loop of the activated changehandler,

philipp supervises thanh. is scheduled for deletion and the message

Thus, philipp does not supervise thanh anymore.

is prompted to the user. Finally, all the scheduled changes are carried out.

In addition to this complete example we will present some standard situ-

ations or decisions which might occur in an ontology update setting and how

they can be realized by means of the Ontology Update Language as presented

in this paper.
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7.6.2 Restricting the Size of the Change

Clearly, it is not always desirable to permit change requests of arbitrary size.

In principle, an entire ontology could be added in one step, which would be a

situation hard to handle with update rules. One solution to this is to restrict

the size of the change a priori. As an extreme case of this, only one RDF triple

per change might be allowed. While this constraint can be imposed by external

means, our formalism is flexible enough to handle it. In order to allow only add

changes consisting of one triple, the following changehandler would have to be

inserted at the beginning of an ontology update specification:

CREATE CHANGEHANDLER tooMuchForOneBite

FOR add ( { ?a ?b ?c . ?d ?e ?f .

!(sameTERM(?a,?d) && sameTERM(?b,?e) && sameTERM(?c,?f))} )

AS feedback("Request denied. Only one triple per change!");

In words, the change request pattern checks whether there are two distinct

triples contained in the change request. If so, the changehandler is activated

without doing any changes (thereby effectively rejecting the request). Note that

the implemented selection strategy also prevents any subsequent changehandler

in the update specification from being activated.

7.6.3 Handling of Change Requests

Of course, change requests might occur which do not activate any of the specified

changehandlers. In the presented implementation, the request will be tacitly de-

nied in this case. It is however possible to create changehandlers that match any

add (resp. delete) request. Placed at the bottom of an ontology update specifi-

cation, those can be used to provide feedback whenever no other changehandler

was activated:

CREATE CHANGEHANDLER noMatchRestrictive FOR add ( { ?a ?b ?c . } )

AS feedback("Request denied. No matching change rule found!");

This is just an explication of the default restrictive strategy: every unforeseen

request will be denied. In the same way, it is of course possible to realize a

permissive strategy by stating

CREATE CHANGEHANDLER noMatchPermissive FOR add ( { ?a ?b ?c . } )

AS applyrequest;

feedback("Request accepted. No matching change rule found.");

instead. This way, all requests not matching any of the preceding changehandlers

will be complied with.
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7.7 Interactive Ontology Updates

We have adapted and extended the Ontology Update Language presented in the

previous sections to a more interactive setting (see Kayser (2010) for a complete

presentation of the approach). The idea is that the same change can be issued

due to different reasons which imply different changes. For example, the change

request

delete data {philipp rdf:type PhDStudent.}

may be due to Philipp having earned his PhD, or due to Philipp having quit his

PhD studies. The motivation of the change request determines which additional

triples should be updated. If Philipp has finished his PhD, his type should be

changed from PhDStudent to PostDoc, a title for his PhD thesis should be

entered. In case Philipp did not finish his PhD, he will most likely change

employers, and his status of being a PhDStudent should be deleted, although it

depends on Philipp’s concrete next steps what his new type should be.

In interactive OUL, the goal is to adapt changehandlers such that they can

deal with different change causes. The idea is to issue a set of questions which

the user has to answer in order to determine all the changes needed.

In the interactive version of OUL, the scenarios of deletion and addition of

data are differentiated. When a triple is added to the knowledge base, which

contains a resource that has not been used before, the user is questioned for its

type. Depending on the type of resource which is added, a template is chosen

which is used to obtain additional information about the resource. For example,

in the scenario of modelling a research institute, additional information which

might be needed is the project(s) on which the person is working, a phone

number, the office where he has his workplace etc.

In the case of deletion of data, three cases are distinguished:

• Should only the statement itself be deleted?

• Should the subject of the statement be removed from the knowledge base?

• Should the object of the statement be removed from the knowledge base?

Note that this distinction between different motivations for deleting from the

ontology are domain-independent, the specification of how the change should be

dealt with are domain-dependent. An example for the first type of change is

that a person switches projects, in which case the relation between him and

his former project should be replaced by a relation between him and his new

project. Another reason for deleting the project affiliation could be that the

person has become the leader of the project. We therefore propose to define

a set of questions for determining the effective changes that are needed which
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depends on the property of the deleted statements. Note that the three reasons

given above are independent from the domain of interest. However, the changes

triggered based on these reasons are domain-dependent.

In the second and the third case the resource itself has to be deleted and

thus every statement which has this resource as its subject or object has to be

deleted and may have to be replaced. An example for this kind of change is a

project which has finished and which is to be deleted from the knowledge base.

In this case, no one should be working on the project anymore. However, people

who have previously worked on the project should be associated with another

project.

For these cases, a deletion handler for each class has to be defined1. This

deletion handler handles all kinds of relations a resource of a specific type can

have and also defines whether relations of a specific type have to be replaced or

can plainly be deleted.

Thus, in the interactive setting, the process of processing a change request

has to be changed. Additionally, the transparency of the mechanism has to

be given up, as the user has to enter a dialogue with the system in order to

determine the whole set of changes which have to be executed.

In the overall architecture of the system only the step of choosing applicable

update specifications has to be changed. In case information is added to the

knowledge base, a check is required as to whether the subject and the object are

already part of the knowledge base. If one or both of them are new resources,

the user is asked for the class the new resource belongs to, the templates for the

specific class(es) are chosen and executed.

In case of deleting data from the knowledge base, the user is asked whether

the deletion concerns the subject, the object or only the relation itself. De-

pending on the answer a deletion handler for the class of the deleted resource

respectively for a triple with the given property is chosen.

The deletion handlers themselves are built in the same way they were built

in the case withouth interactive elements. The grammar has to be extended to

allow for asking questions and processing answers to them.

7.8 Related Work

The contribution of this chapter consists in the definition of an update mecha-

nism which enables a partial automation of frequently recurring updates within

the ontology. To the best of our knowledge no other proposals for a similar mech-

anism exist. However, there is some research which is concerned with ontology

1Inheritance may be exploited in the change handlers, i.e. a deletion handler may call the

deletion handlers of the superclasses of the class for which it is specified. However, this is not

implemented in the current system
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change.

However, Papavassiliou et al. (2009) have proposed to analyse change logs

of RDF/S knowledge bases in order to generate high-level descriptions of the

changes that are made to the ontology. The idea is to abstract from the addition

and deletion of triples to more abstract descriptions such as the generalization

of the domain of a relation. They propose a set of high-level changes into

which each set of atomic changes can uniquely be divided. Their approach is

domain-independent as the proposed high-level changes are not dependent on

the concrete formalization at hand. OUL could be used for encoding the high-

level changes and would thus allow for directly carrying out a high-level change.

Ontology Evolution deals with the problems arising from changes in the

schema of the ontology and their propagation to dependent artefacts. Stojanovic

(2004) has defined evolution strategies which are dealing with inconsistencies

arising from changes to the ontology and which help to automatically resolve

these problems. Again, the proposed solutions are on the level of constructs of

the ontology language and do not incorporate domain-specific information.

The field of Ontology Versioning is dealing with the problems arising from

the evolution of an ontology and due to changing and updating and ontology

with respect to model specific kind of data. One main aspect is to grasp semantic

differences between two versions of an ontology and to maintain information as

to whether a concept or relation has the same meaning in two versions of the

ontology (Klein and Fensel, 2001; Klein et al., 2002; Völkel and Groza, 2006).

The challenge of finding this information consists in the possibility to express

the same information in several ways and in the fact that not all information

is represented explicitely in the ontology but may be inferred using reasoning

tools. The overlap between the problems in ontology versioning and the change

management we propose is that we are also interested in whether a change would

induce specific changes to the semantics of concepts in the ontology.

Ontology Revision Qi and Yang (2008) deals with automatically detecting

inconsistencies in an ontology and in automatic means for resolving them. Stan-

dard strategies consist in finding a minimal subset of the axioms from the ontol-

ogy which is still inconsistent. Removing one of the axioms leads to a consistent

ontology. The problem of ontology revision in the context of guided changes is

that it is not clear a priori which of the axioms are removed during the revision

process.

7.9 Implementation

We provide an implementation of our architecture and our language proposal

at http://people.aifb.kit.edu/uhe/OUL/. The implementation uses Jena as

underlying framework for ontology management. This framework was chosen,
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as Jena provides an implementation of SPARQL Update (Schenk et al., 2008).

SPARQL Update is an extension of the ontology query language SPARQL

(Prud’hommeaux and Seaborne, 15 Jan. 2008). While SPARQL’s purpose is to

find data in a RDF graph, SPARQL Update provides functionality for updating

and managing RDF graphs using a SPARQL-like syntax (see Section 2.3 for an

introduction to SPARQL Update).

Our implementation provides a wrapper for Jena’s SPARQL Update end-

point, which implements the ontology update management as we proposed it.

SPARQL update requests can be submitted as in the original implementation,

but instead of directly executing them, the graph of changes that will have to be

applied is constructed and a suitable change handler is searched for as explained

in Section 7.5 and the respective actions are performed. By default, if no change

handler is found, the ontology remains unchanged. This approach makes the

update management as transparent as possible for the user. The only difference

with respect to using the original implementation is using another endpoint and

getting all the described advantages. This allows to open SPARQL endpoints

for writing access more liberally.

7.10 Conclusion

In this chapter, we have addressed the task of updating an ontology due to

changes in the described domain. We have argued for a formalism that allows for

specifying the domain-dependent ways in which a specific ontology may evolve

over time. We thoroughly discussed the crucial design decisions to be made for

an ontology update framework that would automatically align change requests

with change patterns and thereby allow to delegate simple ontology maintenance

tasks to users not necessarily possessing the expertise of a knowledge engineer.

We presented and implemented a proposal for such a framework.

An elaborate ontology update mechanism as presented here allows ontologies

to be updated in a more predictable and quality preserving way. Administrators

of ontology based systems may choose to allow a wider audience to edit their

ontologies in a controlled manner, thus extending the collaborative aspect of

ontology maintenance.
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Algorithm 6: Processing of Change Request

Input: ontology O consisting of axioms (RDF triples – Note that in

RDFS every axiom is represented by exactly one triple),

ontology update specification US treated as list of changehandlers,

change request op(Ax) where op ∈ {add, del} and Ax is a set of axioms

resp. triples.

Data: candidate changehandler that is checked for applicability

toExecute container to store the activated changehandler

updateList list of SPARQL Updates to be carried out, initially empty

Result: Updated ontology O
1 //find an appropriate changehandler

2 while toExecute.isEmpty and not US.endOfDocument do

3 candidate← US.nextChangeHandler
4 matches← SPARQLmatch(candidate.changerequest, op(Ax))

5 if not matches.isEmpty then

6 if matches.count == 1 or not candidate.changerequest.unique

then

7 instPrecondition←
Substitute(candidate.precondition,matches.first)

8 if not evaluate(instPrecondition,O).isEmpty then

9 toExecute.add(candidate)

10 end

11 end

12 end

13 end

14 //execute actions, if applicable

15 if not toExecute.isEmpty then

16 todo← Substitute(toExecute.first.actions,matches.first)

17 cumulateActions(O, todo, updateList)
18 foreach update ∈ updateList do

19 apply update to O
20 end

21 end

22 return O
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Chapter 8

Conclusion

In this chapter, we will first summarize the results of this thesis including how

the research questions defined in the beginning were adressed and which solu-

tions were presented to solve the identified problems. Afterwards, we present an

outlook based on questions which were raised but not answered in this thesis.

These open questions may give rise to further research in the future.

8.1 Summary

This thesis has addressed the Ontology Change process. First, an overview of

existing approaches for the support of different changes and different phases of

the change process was given. We have identified two shortcomings of existing

approaches: the lack of support for Ontology Updates, i.e. for changes which

originate in a change in the domain, and the lack of methods for Ontology

Mining which address the specific properties of ontology languages with low

expressivity, especially RDF.

Based on these shortcomings of existing work, two research questions have

been defined and addressed:

1. How can uncertain facts be induced from lightweight ontologies in a domain-

independent way?

2. How can knowledge bases be updated automatically, such that new infor-

mation can automatically be incorporated into the knowledge base without

making it inconsistent or incoherent?

The contribution of the thesis consists in the proposal of a family of kernel

functions for RDF data, which has proven to give results which perform com-

parably to state-of-the-art kernels for entities in semantic data. In contrast to

semantic kernels which were previously defined, the proposed kernel functions

125
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rely on the analysis of the graph structure represented by the ontology, thus be-

ing independent of the semantic interpretation of the knowledge representation.

Additionally, this allows for an off-the-shelf application of the proposed kernel

methods to new domains without adaptation of the kernel functions to the new

domain.

Besides the application of the kernel functions for classifying entities in RDF

datasets, the proposed kernel functions have also been applied to the link pre-

diction problem on which they were compared to statistical relational learning

approaches. Our evaluation shows that our kernel functions can outperform the

statisical relational learning approaches.

With respect to the support of Ontology Updates, we have identified change

patterns, i.e. types of changes, as a useful starting point for supporting the

Ontology Update process. The observation that changes may be grouped into

classes which describe the same kind of change and which lead to similar changes

in the ontology, motivates the definition of a framework for exploiting these

frequent patterns in the changes. So-called changehandlers specify for a class

of changes how they should be processed and which additional changes they

should trigger. The changehandler describes the changes necessary to adapt the

ontology to a specific kind of change in the domain. A framework of how these

changehandlers may be incorporated has been proposed. While the framework

itself is independent of the precise knowledge representation, it was implemented

for the case of RDF in the scope of this thesis. A language for specifying change

patterns based on RDF and SPARQL Update has been proposed. An interactive

extension of the proposed framework allows for the handling of classes of changes

which may occur for different reasons and require different actions depending

on the reason for which they occur.

8.2 Future Work

While the work presented here presented here are first steps towards a solution

of the problems that were identified at the beginning of the thesis, there is

still a lot of space for improvement. In the following, we discuss some lines of

research which may be interesting to pursue in order to improve the systems

and approaches presented here.

8.2.1 Kernel Functions for RDF data

The kernel function presented here are based on the analysis of the graph struc-

tures underlying the RDF data representation.

Combination of simple kernels. In our experiments, we have examined

the performance of kernel functions based on the analysis of a single kind of

structure. However, the combination of different kernels using kernel modifiers
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such as weighted sums may improve the results of the obtained classification.

An interesting aspect therefore would be the combination of our kernels with

manually designed kernel functions such as the ones proposed in Bloehdorn and

Sure (2007), which allow for the encoding of additional background knowledge

and assumptions into the kernel.

Choice of appropriate kernel. Our experiments show that within the

family of kernel functions we propose no single best kernel function exists and

that the existing approaches show a very unstable performance when applied

to different data sets. So far, the reasons for these differences in performance

are only understood to a very limited extent. For the future development of

machine learning methods for the Semantic Web, it would be beneficial to anal-

yse the properties of RDF data sets and to identify those which influence the

performance of learning algorithms on these datasets.

Automatic ontology refinement. The kernel methods presented in Chap-

ters 5 and 6 may be used to train classifiers which are then used for completing

an ontology. The thus derived links may be integrated in the ontology using

the ontology update framework defined in Chapter 7. The classifier would thus

become the issuer of change requests sent to the update framework.

Concept Drift detection deals with detecting changes in the distribution

of the values of the predicted variable in supervised learning. The classifiers

for link prediction presented in Chapter 6 may be used to detect the change of

usage in a certain type of link (by comparing the distribution of the predicted

values for all instances over time) and can thus trigger a request for manual

inspection of the ontology, as an engineer might want to adapt the definition

of the relation to its actual usage or the relation has been used in an error-

prone way and manual adaptation is also possible. Such a kind of monitoring

is especially interesting in the case where updates are performed automatically,

e.g. in the update framework presented in Chapter 7.

8.2.2 Ontology Updates

Being aware that the framework, language and implementation presented in

Chapter 7 constitutes just a first step towards a suitable trigger functionality

for semantic technologies, we identify several directions for future research:

Extending the implementation to OWL. Currently, our implementa-

tion works with RDF(S) and SPARQL. Extending it to OWL would require to

extend SPARQL accordingly, and to allow Algorithm 6 to use multiple-triple

axioms as they often occur in OWL DL knowledge bases.

Combination with belief revision. Although we have argued that the

rationale of belief revision does not fit well with our purpose, there are certainly

cases where a combination of both is beneficial. Belief revision could be used as a

fall-back strategy if a change request would lead to an inconsistent ontology and
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is not tackled by any of the update specification’s change patterns. Instead of

simply rejecting the change, belief revision techniques could be more appropri-

ate. In general, belief revision and other coping strategies could be incorporated

into the proposed formalism in a plugin-manner as additional actions next to

adding and deleting axioms.

Higher order constructs. Our proposal of an ontology update has a

rather operational flavor. While this arguably facilitates the employment and

allows for an efficient and straightforward implementation, a more declarative

way of describing the possible domain changes would be more in the spirit of

the current ontology languages. Moreover a specification in OWL would abide

by the rationale to reuse formalisms (just as the XML syntax is also used for

XML Schema).

Hence it seems sensible to introduce a more abstract description layer for

complex changes, preferably in OWL. The underlying model for such a frame-

work could be inspired by the usual ways of describing discrete dynamic systems

such as finite automata or petri nets.

A simple example would be to relate the two classes Child and Adult with

each other with a property allowing the transformation of instances of the one

class to an instance of the other, e.g Child disjointTransformationTo Adult.

Note that in OWL2 such a property is legal due to punning.

Learning Change Patterns. Clearly, the success of the proposed frame-

work depends on the quality of the update specification. While in certain do-

mains the development of such a specification might be straight forward (pos-

sibly because there are already informal documents describing the standard

processes and work flows) there might be scenarios where this is not the case.

Under those circumstances, frequent hange patterns could be extracted from on-

tology change logs by some machine learning techniques. Those findings could

then be presented to the knowledge engineer as suggestions for ontology update

rules to be incorporated into the specification.
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Richard Cyganiak, and Sebastian Hellmann. DBpedia – A Crystallization

133



134 BIBLIOGRAPHY

Point for the Web of Data. Journal of Web Semantics: Science, Services and

Agents on the World Wide Web, 7(3):154–165, 2009b.

Stephan Bloehdorn and York Sure. Kernel Methods for Mining Instance Data

in Ontologies. In Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang,

Kyung-Il Lee, Lyndon J B Nixon, Jennifer Golbeck, Peter Mika, Diana May-

nard, Guus Schreiber, and Philippe Cudré-Mauroux, editors, Proceedings of
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Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic Pattern Kernels

for Predictive Graph Mining. In Won Kim, Ron Kohavi, Johannes Gehrke,

and William DuMouchel, editors, Proceedings of the 10t ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD 2004),

pages 158–167, Seattle, WA, USA, August 2004. ACM Press, New York, NY,

USA.

Yi Huang, Volker Tresp, Markus Bundschus, Achim Rettinger, and Hans-Peter

Kriegel. Multivariate Structured Prediction for Learning on Semantic Web.

In Paolo Frasconi and Francesca A. Lisi, editors, Proceedings of the 20th In-

ternational Conference on Inductive Logic Programming (ILP 2010), volume

6489 of Lecture Notes in Computer Science, pages 92–104, Firenze, Italy, 2010.

Springer Verlag.
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Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, and Peter L.

Bartlett. New Support Vector Algorithms. Neural Computation, 12(5):1207–

1245, May 2000.

Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and

Robert C. Williamson. Estimating the Support of a High-Dimensional Dis-

tribution. Neural Computation, 13(7), July 2001.



BIBLIOGRAPHY 143
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