2,205 research outputs found

    On Colorings of Graph Powers

    Get PDF
    In this paper, some results concerning the colorings of graph powers are presented. The notion of helical graphs is introduced. We show that such graphs are hom-universal with respect to high odd-girth graphs whose (2t+1)(2t+1)st power is bounded by a Kneser graph. Also, we consider the problem of existence of homomorphism to odd cycles. We prove that such homomorphism to a (2k+1)(2k+1)-cycle exists if and only if the chromatic number of the (2k+1)(2k+1)st power of S2(G)S_2(G) is less than or equal to 3, where S2(G)S_2(G) is the 2-subdivision of GG. We also consider Ne\v{s}et\v{r}il's Pentagon problem. This problem is about the existence of high girth cubic graphs which are not homomorphic to the cycle of size five. Several problems which are closely related to Ne\v{s}et\v{r}il's problem are introduced and their relations are presented

    On the theta number of powers of cycle graphs

    Get PDF
    We give a closed formula for Lovasz theta number of the powers of cycle graphs and of their complements, the circular complete graphs. As a consequence, we establish that the circular chromatic number of a circular perfect graph is computable in polynomial time. We also derive an asymptotic estimate for this theta number.Comment: 17 page

    Colorful Strips

    Full text link
    Given a planar point set and an integer kk, we wish to color the points with kk colors so that any axis-aligned strip containing enough points contains all colors. The goal is to bound the necessary size of such a strip, as a function of kk. We show that if the strip size is at least 2k−12k{-}1, such a coloring can always be found. We prove that the size of the strip is also bounded in any fixed number of dimensions. In contrast to the planar case, we show that deciding whether a 3D point set can be 2-colored so that any strip containing at least three points contains both colors is NP-complete. We also consider the problem of coloring a given set of axis-aligned strips, so that any sufficiently covered point in the plane is covered by kk colors. We show that in dd dimensions the required coverage is at most d(k−1)+1d(k{-}1)+1. Lower bounds are given for the two problems. This complements recent impossibility results on decomposition of strip coverings with arbitrary orientations. Finally, we study a variant where strips are replaced by wedges

    Six signed Petersen graphs, and their automorphisms

    Get PDF
    Up to switching isomorphism there are six ways to put signs on the edges of the Petersen graph. We prove this by computing switching invariants, especially frustration indices and frustration numbers, switching automorphism groups, chromatic numbers, and numbers of proper 1-colorations, thereby illustrating some of the ideas and methods of signed graph theory. We also calculate automorphism groups and clusterability indices, which are not invariant under switching. In the process we develop new properties of signed graphs, especially of their switching automorphism groups.Comment: 39 pp., 7 fi
    • …
    corecore