184,420 research outputs found

    THE PSYCHOMOTOR THEORY OF HUMAN MIND

    Get PDF
    This study presents a new theory to explain the neural origins of human mind. This is the psychomotor theory. The author briefly analyzed the historical development of the mind-brain theories. The close relations between psychological and motor systems were subjected to a rather detailed analysis, using psychiatric and neurological examples. The feedback circuits between mind, brain, and body were shown to occur within the mind-brain-body triad, in normal states, and psycho-neural diseases. It was stated that psychiatric signs and symptoms are coupled with motor disturbances; neurological diseases are coupled with psychological disturbances; changes in cortico-spinal motor-system activity may influence mind-brain-body triad, and vice versa. Accordingly, a psychomotor theory was created to explain the psychomotor coupling in health and disease, stating that, not themind-brain duality or unity, but themind-brain-body triad as a functional unit may be essential in health and disease, because mind does not end in the brain, but further controls movements, in a reciprocal manner; mental and motor events share the same neural substrate, cortical, and spinalmotoneurons;mental events emerging from the motoneuronal system expressed by the human language may be closely coupled with the unity of the mind-brain-body triad. So, the psychomotor theory rejects the mind-brain duality and instead advances the unity of the psychomotor system, which will have important consequences in understanding and improving the human mind, brain, and body in health and disease

    Analog IC Design at the University of Twente

    Get PDF
    This article describes some recent research results from the IC Design group of the University of Twente, located in Enschede, The Netherlands.\ud \ud Our research focuses on analog CMOS circuit design with emphasis on high frequency and broadband circuits. With the trend of system integration in mind, we try to develop new circuit techniques that enable the next steps in system integration in nanometer CMOS technology. Our research funding comes from industry, as well as from governmental organizations. We aim to find fundamental solutions for practical problems of integrated circuits realized in industrial Silicon technologies.\ud \ud CMOS IC technology is dictated by optimal cost and performance of digital circuits and is certainly not optimized for nice analog behavior. As analog designers, we do not have the illusion to be able to change the CMOS technology, so we have to "live with it" and solve the problems by design. In this article several examples will be shown, where problematic analog behavior, such as noise and distortion, can be tackled with new circuit design techniques. These circuit techniques are developed in such a way that they do benefit from the modern technology and thus enable further integration. This way we can improve various analog building blocks for wireless, wire-line and optical communication. Below some examples are given.\ud \u

    Informational Neuro-Connections of the Brain with the Body Supporting the Informational Model of Consciousness

    Get PDF
    Introduction: The objective of this investigation is to analyse the informational circuits of the brain connections with the body from neurologic and neuroscience point of view, on the basis of the concepts of information promoted by the Informational Model of Consciousness. Analysis: Distinguishing between the virtual and matter-related information promoted by the Informational Model of Consciousness, the main specific features of consciousness are analyzed from the informational perspective, showing that the informational architecture of consciousness consists in seven groups of specific activities, defined as cognitive centres, each of them with specific distinct tasks, but correlated each other: centre of acquisition and storing of information (memory), centre of decision and command (decision), centre of the emotional states (emotions), centre of the body maintenance (power and health), centre of the genetic elaboration/transmission (reproduction) and the info-genetic generator, inherited from the parents (predispositions, talents and skills). A special centre, dedicated to the connectivity with some extra-power properties of the mind is also introduced, assuring an intimate supra-sensitive detection of the world to explain the associated phenomena of the near-death experiences. Result: The activity of all these centres should be supported neurologically by the brain neuro-connectivity to the body and to external and internal info-signals. On the basis of the informational analysis, the neuro-connections of the brain regions associated to the main characteristics of the cognitive centres are highlighted, showing the anatomic and neuro-functional relation between the distinct components of the brain and the specific operating body regions. These connections describe in terms of information the brain-body neuro-activities as informational specific circuits, composed by the info-operational subsystems managed by the brain, and sensors, transducer and execution elements. Conclusion: The components and connections mind-body stipulated by the Informational Model of Consciousness are supported by the neurologic/neuroscience evidenc

    Dynamical Casimir effect in superconducting circuits: a numerical approach

    Get PDF
    We present a numerical analysis of the particle creation for a quantum field in the presence of time dependent boundary conditions. Having in mind recent experiments involving superconducting circuits, we consider their description in terms of a scalar field in a one dimensional cavity satisfying generalized boundary conditions that involve a time-dependent linear combination of the field and its spatial and time derivatives. We evaluate numerically the Bogoliubov transformation between {\it in} and {\it out}-states and find that the rate of particle production strongly depends on whether the spectrum of the unperturbed cavity is equidistant or not, and also on the amplitude of the temporal oscillations of the boundary conditions. We provide analytic justifications for the different regimes found numerically.Comment: 20 pages. 11 figure

    Etiology of phantom limb syndrome: Insights from a 3D default space consciousness model

    Get PDF
    In this article, we examine phantom limb syndrome to gain insights into how the brain functions as the mind and how consciousness arises. We further explore our previously proposed consciousness model in which consciousness and body schema arise when information from throughout the body is processed by corticothalamic feedback loops and integrated by the thalamus. The parietal lobe spatially maps visual and non-visual information and the thalamus integrates and recreates this processed sensory information within a three-dimensional space termed the ‘‘3D default space.’’ We propose that phantom limb syndrome and phantom limb pain arise when the afferent signaling from the amputated limb is lost but the neural circuits remain intact. In addition, integration of conflicting sensory information within the default 3D space and the loss of inhibitory afferent feedback to efferent motor activity from the amputated limb may underlie phantom limb pain

    Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3

    Get PDF
    The role of electrical activity in axon guidance has been extensively studied in vitro. To better understand its role in the intact nervous system, we imaged intracellular Ca2+ in zebrafish primary motor neurons (PMN) during axon pathfinding in vivo. We found that PMN generate specific patterns of Ca2+ spikes at different developmental stages. Spikes arose in the distal axon of PMN and were propagated to the cell body. Suppression of Ca2+ spiking activity in single PMN led to stereotyped errors, but silencing all electrical activity had no effect on axon guidance, indicating that an activity-based competition rule regulates this process. This competition was not mediated by synaptic transmission. Combination of PlexinA3 knockdown with suppression of Ca2+ activity in single PMN produced a synergistic increase in the incidence of pathfinding errors. However, expression of PlexinA3 transcripts was not regulated by activity. Our results provide an in vivo demonstration of the intersection of spontaneous electrical activity with the PlexinA3 guidance molecule receptor in regulation of axon pathfinding.Fil: Plazas, Paola Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; Argentina. University of California at San Diego. Kavli Institute for Brain and Mind. Division of Biological Sciences. Neurobiology Section and Center for Neural Circuits and Behavior; Estados UnidosFil: Nicol, Xavier. University of California at San Diego. Kavli Institute for Brain and Mind. Division of Biological Sciences. Neurobiology Section and Center for Neural Circuits and Behavior; Estados UnidosFil: Spitzer, Nicholas C.. University of California at San Diego. Kavli Institute for Brain and Mind. Division of Biological Sciences. Neurobiology Section and Center for Neural Circuits and Behavior; Estados Unido

    Fate of Duplicated Neural Structures

    Full text link
    Statistical mechanics determines the abundance of different arrangements of matter depending on cost-benefit balances. Its formalism and phenomenology percolate throughout biological processes and set limits to effective computation. Under specific conditions, self-replicating and computationally complex patterns become favored, yielding life, cognition, and Darwinian evolution. Neurons and neural circuits sit at a crossroads between statistical mechanics, computation, and (through their role in cognition) natural selection. Can we establish a {\em statistical physics} of neural circuits? Such theory would tell what kinds of brains to expect under set energetic, evolutionary, and computational conditions. With this big picture in mind, we focus on the fate of duplicated neural circuits. We look at examples from central nervous systems, with a stress on computational thresholds that might prompt this redundancy. We also study a naive cost-benefit balance for duplicated circuits implementing complex phenotypes. From this we derive {\em phase diagrams} and (phase-like) transitions between single and duplicated circuits, which constrain evolutionary paths to complex cognition. Back to the big picture, similar phase diagrams and transitions might constrain I/O and internal connectivity patterns of neural circuits at large. The formalism of statistical mechanics seems a natural framework for thsi worthy line of research.Comment: Review with novel results. Position paper. 16 pages, 3 figure

    Looking into the mind of the mother : pup exposure and reactivation of maternal circuits

    Get PDF
    The female rat, among other species, undergoes a fundamental brain re-modeling as a consequence of experiencing the normal and natural events of pregnancy and offspring stimulation. Compelling data show that maternal experiences produce neurobiological modifications in the female leading to specific maternal behaviors, affective states, and the basic underlying female neurobiology necessary to raise viable offspring. This study aims to evaluate the number, quality and selective activation of neurons that develop during the maternal experience. The study showed a trend toward supporting the hypothesis that a “maternal-circuit” is formed through the proliferation of neurons during late-motherhood and lactation, and is selectively reactivated by mothers exposed to foster pups
    • 

    corecore