55 research outputs found

    An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement

    Get PDF
    The power mixer array is presented as a novel power generation approach for non-constant envelope signals. It comprises several power mixer units that are dynamically turned on and off to improve the linearity and back-off efficiency. At the circuit level, the power mixer unit can operate as a switching amplifier to achieve high peak power efficiency. Additional circuit level linearization and back-off efficiency improvement techniques are also proposed. To demonstrate the feasibility of this idea, a fully-integrated octave-range CMOS power mixer array is implemented in a 130 nm CMOS process. It is operational between 1.2 GHz and 2.4 GHz and can generate an output power of +31.3 dBm into an external 50 Ω load with a PAE of 42% and a gain compression of only 0.4 dB at 1.8 GHz. It achieves a PAE of 25%, at an average output power of +26.4 dBm, and an EVM of 4.6% with a non-constant-envelope 16 QAM signal. It can also produce arbitrary signal levels down to -70 dBm of output power with the 16 QAM-modulated signal without any RF gain control circuit

    Vidutinių dažnių 5G belaidžių tinklų galios stiprintuvų tyrimas

    Get PDF
    This dissertation addresses the problems of ensuring efficient radio fre-quency transmission for 5G wireless networks. Taking into account, that the next generation 5G wireless network structure will be heterogeneous, the device density and their mobility will increase and massive MIMO connectivity capability will be widespread, the main investigated problem is formulated – increasing the efficiency of portable mid-band 5G wireless network CMOS power amplifier with impedance matching networks. The dissertation consists of four parts including the introduction, 3 chapters, conclusions, references and 3 annexes. The investigated problem, importance and purpose of the thesis, the ob-ject of the research methodology, as well as the scientific novelty are de-fined in the introduction. Practical significance of the obtained results, defended state-ments and the structure of the dissertation are also included. The first chapter presents an extensive literature analysis. Latest ad-vances in the structure of the modern wireless network and the importance of the power amplifier in the radio frequency transmission chain are de-scribed in detail. The latter is followed by different power amplifier archi-tectures, parameters and their improvement techniques. Reported imped-ance matching network design methods are also discussed. Chapter 1 is concluded distinguishing the possible research vectors and defining the problems raised in this dissertation. The second chapter is focused around improving the accuracy of de-signing lumped impedance matching network. The proposed methodology of estimating lumped inductor and capacitor parasitic parameters is dis-cussed in detail provi-ding complete mathematical expressions, including a summary and conclusions. The third chapter presents simulation results for the designed radio fre-quency power amplifiers. Two variations of Doherty power amplifier archi-tectures are presented in the second part, covering the full step-by-step de-sign and simulation process. The latter chapter is concluded by comparing simulation and measurement results for all designed radio frequency power amplifiers. General conclusions are followed by an extensive list of references and a list of 5 publications by the author on the topic of the dissertation. 5 papers, focusing on the subject of the discussed dissertation, have been published: three papers are included in the Clarivate Analytics Web of Sci-ence database with a citation index, one paper is included in Clarivate Ana-lytics Web of Science database Conference Proceedings, and one paper has been published in unreferred international conference preceedings. The au-thor has also made 9 presentations at 9 scientific conferences at a national and international level.Dissertatio

    An agile supply modulator with improved transient performance for power efficient linear amplifier employing envelope tracking techniques

    Get PDF
    This article presents an agile supply modulator with optimal transient performance that includes improvement in rise time, overshoot and settling time for the envelope tracking supply in linear power amplifiers. For this purpose, we propose an on-demand current source module: the bang-bang transient performance enhancer (BBTPE). Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further helps the proposed system to reduce both overshoot and settling time. This article also introduces an efficient selective tracking of envelope signal for linear PAs. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in adjacent channel power ratio (ACPR) and error vector magnitude (EVM), respectively.Peer ReviewedPostprint (author's final draft

    A Review of Watt-Level CMOS RF Power Amplifiers

    Full text link

    Concurrent Multi-Band Envelope Tracking Power Amplifiers for Emerging Wireless Communications

    Get PDF
    Emerging wireless communication is shifting toward data-centric broadband services, resulting in employment of sophisticated and spectrum efficient modulation and access techniques. This yields communication signals with large peak-to-average power ratios (PAPR) and stringent linearity requirements. For example, future wireless communication standard, such as long term evolution advanced (LTE-A) require adoption of carrier aggregation techniques to improve their effective modulation bandwidth. The carrier aggregation technique for LTE-A incorporates multiple carriers over a wide frequency range to create a wider bandwidth of up to 100MHz. This will require future power amplifiers (PAs) and transmitters to efficiently amplify concurrent multi-band signals with large PAPR, while maintaining good linearity. Different back-off efficiency enhancement techniques are available, such as envelope tracking (ET) and Doherty. ET has gained a lot of attention recently as it can be applied to both base station and mobile transmitters. Unfortunately, few publications have investigated concurrent multi-band amplification using ET PAs, mainly due to the limited bandwidth of the envelope amplifier. In this thesis, a novel approach to enable concurrent amplification of multi-band signals using a single ET PA will be presented. This thesis begins by studying the sources of nonlinearities in single-band and dual-band PAs. Based on the analysis, a design methodology is proposed to reduce the sources of memory effects in single-band and dual-band PAs from the circuit design stage and improve their linearizability. Using the proposed design methodology, a 45W GaN PA was designed. The PA was linearized using easy to implement, memoryless digital pre-distortion (DPD) with 8 and 28 coefficients when driven with single-band and dual-band signals, respectively. This analysis and design methodology will enable the design of PAs with reduced memory effects, which can be linearized using simple, power efficient linearization techniques, such as lookup table or memoryless polynomial DPD. Note that the power dissipation of the linearization engine becomes crucial as we move toward smaller base station cells, such as femto- and pico-cells, where complicated DPD models cannot be implemented due to their significant power overhead. This analysis is also very important when implementing a multi-band ET PA system, where the sources of memory effects in the PA itself are minimized through the proposed design methodology. Next, the principle of concurrent dual-band ET operation using the low frequency component (LFC) of the envelope of the dual-band signal is presented. The proposed dual-band ET PA modulates the drain voltage of the PA using the LFC of the envelope of the dual-band signal. This will enable concurrent dual-band operation of the ET PA without posing extra bandwidth requirements on the envelope amplifier. A detailed efficiency and linearity analysis of the dual-band ET PA is also presented. Furthermore, a new dual-band DPD model with supply dependency is proposed in this thesis, capable of capturing and compensating for the sources of distortion in the dual-band ET PA. To the best of our knowledge, concurrent dual-band operation of ET PAs using the LFC of the envelope of the dual-band signal is presented for the first time in the literature. The proposed dual-band ET operation is validated using the measurement results of two GaN ET PA prototypes. Lastly, the principle of concurrent dual-band ET operation is extended to multi-band signals using the LFC of the envelope of the multi-band signal. The proposed multi-band ET operation is validated using the measurement results of a tri-band ET PA. To the best of our knowledge, this is the first reported tri-band ET PA in literature. The tri-band ET PA is linearized using a new tri-band DPD model with supply dependency

    High Efficiency CMOS Power Amplifiers for Drain Modulation Based RF Transmitters

    Get PDF
    The rapid evolution of wireless communication technologies increased the need for handheld devices that can support dissimilar standards or better user mobility and more battery life. Traditional radio architectures fail to satisfy these challenging features. Software Defined Radio (SDR) is recently introduced to implement a new generation of wireless radios capable of coping with these stringent requirements through software reprogramming. Although the term SDR is widely used, it is still an idealized method and is not implementable using available technologies. Hence, the term “SDR”, has been so far, referring to only partially upgradeable radios. Two current practical solutions substituting SDR are broadband and multiband transceivers. Radio Frequency (RF) front ends and especially the power amplifier is the main challenge in implementation of software defined radios. Power Amplifiers (PA) dominate the sources of distortions and power consumption in the RF-front end. They are typically operated in linear classes in order to minimize the linearity degradation. However, they lead to poor average power efficiency especially when fed with signals with high Peak to average power ratio (PAPR) such as Wideband Code Division Multiple Access (W-CDMA) and Long Term Evolution (LTE) signals. This is the main cause of short battery life in transceivers. To remedy this issue, some advanced methods like Doherty amplifier and drain modulation based architectures are introduced. This thesis expounds on the implementation of high efficiency radio transmitters, capable of multi standard operation. The RF amplifier is still one of the main challenges in the realization of these transmitters. In this work, two RF PAs, having multiband and broad band characteristics, were implemented using 0.13µm CMOS technology. The first PA operates at two frequency bands, 2.4GHz and 3.5GHz. The other PA has center frequency equal to 2.4GHz and 600MHz bandwidth, respectively. These PAs are expected to lay the foundation for the realization of high efficiency drain modulation based multiband and broadband transmitters

    An Octave-Range Watt-Level Fully Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off Efficiency Improvement

    Full text link

    3-D distributed memory polynomial behavioral model for concurrent dual-band envelope tracking power amplifier linearization

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a new 3-D behavioral model to compensate for the nonlinear distortion arising in concurrent dual-band (DB) Envelope Tracking (ET) Power Amplifiers (PAs). The advantage of the proposed 3-D distributed memory polynomial (3D-DMP) behavioral model, in comparison to the already published behavioral models used for concurrent dual-band envelope tracking PA linearization, is that it requires a smaller number of coefficients to achieve the same linearity performance, which reduces the overall identification and adaptation computational complexity. The proposed 3D-DMP digital predistorter (DPD) is tested under different ET supply modulation techniques. Moreover, further model order reduction of the 3D-DMP DPD is achieved by applying the principal component analysis (PCA) technique. Experimental results are shown considering a concurrent DB transmission of aWCDMA signal at 1.75GHz and a 10-MHz bandwidth LTE signal at 2.1 GHz. The performance of the proposed 3D-DMP DPD is evaluated in terms of linearity, drain power efficiency, and computational complexity.Peer ReviewedPostprint (author's final draft
    corecore