9 research outputs found

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

    Get PDF
    We say that a circuit CC over a field FF functionally computes an nn-variate polynomial PP if for every x{0,1}nx \in \{0,1\}^n we have that C(x)=P(x)C(x) = P(x). This is in contrast to syntactically computing PP, when CPC \equiv P as formal polynomials. In this paper, we study the question of proving lower bounds for homogeneous depth-33 and depth-44 arithmetic circuits for functional computation. We prove the following results : 1. Exponential lower bounds homogeneous depth-33 arithmetic circuits for a polynomial in VNPVNP. 2. Exponential lower bounds for homogeneous depth-44 arithmetic circuits with bounded individual degree for a polynomial in VNPVNP. Our main motivation for this line of research comes from our observation that strong enough functional lower bounds for even very special depth-44 arithmetic circuits for the Permanent imply a separation between #P{\#}P and ACCACC. Thus, improving the second result to get rid of the bounded individual degree condition could lead to substantial progress in boolean circuit complexity. Besides, it is known from a recent result of Kumar and Saptharishi [KS15] that over constant sized finite fields, strong enough average case functional lower bounds for homogeneous depth-44 circuits imply superpolynomial lower bounds for homogeneous depth-55 circuits. Our proofs are based on a family of new complexity measures called shifted evaluation dimension, and might be of independent interest

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,,aKFna_1,\ldots,a_K \in {\mathbb F}^n, \bullet the Prover sends the Verifier the values C(a1),,C(aK)FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(Kd)\tilde{O}(K \cdot d) length, and \bullet the Verifier tosses poly(log(dKF/ε))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than ε\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    Non-commutative Formulas and Frege Lower Bounds: a New Characterization of Propositional Proofs:In Proceedings of the 30th Annual Computational Complexity Conference (CCC): June 17-19, 2015. Invited to the special journal issue on CCC'15 (Comput. Complexity CC).

    Get PDF
    Does every Boolean tautology have a short propositional-calculus proof? Here, a propositional-calculus (i.e. Frege) proof is any proof starting from a set of axioms and deriving new Boolean formulas using a fixed set of sound derivation rules. Establishing any super-polynomial size lower bound on Frege proofs (in terms of the size of the formula proved) is a major open problem in proof complexity, and among a handful of fundamental hardness questions in complexity theory by and large. Non-commutative arithmetic formulas, on the other hand, constitute a quite weak computational model, for which exponential-size lower bounds were shown already back in 1991 by Nisan [STOC 1991], using a particularly transparent argument. In this work we show that Frege lower bounds in fact follow from corresponding size lower bounds on non-commutative formulas computing certain polynomials (and that such lower bounds on non-commutative formulas must exist, unless NP=coNP). More precisely, we demonstrate a natural association between tautologies T to non-commutative polynomials p, such that: (*) if T has a polynomial-size Frege proof then p has a polynomial-size non-commutative arithmetic formula; and conversely, when T is a DNF, if p has a polynomial-size non-commutative arithmetic formula over GF(2) then T has a Frege proof of quasi-polynomial size. The argument is a characterization of Frege proofs as non-commutative formulas: we show that the Frege system is (quasi-)polynomially equivalent to a non-commutative Ideal Proof System (IPS), following the recent work of Grochow and Pitassi [FOCS 2014] that introduced a propositional proof system in which proofs are arithmetic circuits, and the work in [Tzameret 2011] that considered adding the commutator as an axiom in algebraic propositional proof systems. This gives a characterization of propositional Frege proofs in terms of (non-commutative) arithmetic formulas that is tighter than (the formula version of IPS) in Grochow and Pitassi [FOCS 2014], in the following sense: (i) The non-commutative IPS is polynomial-time checkable - whereas the original IPS was checkable in probabilistic polynomial-time; and (ii) Frege proofs unconditionally quasi-polynomially simulate the non-commutative IPS - whereas Frege was shown to efficiently simulate IPS only assuming that the decidability of PIT for (commutative) arithmetic formulas by polynomial-size circuits is efficiently provable in Frege

    Reasons for Hardness in QBF Proof Complexity

    Get PDF
    Quantified Boolean Formulas (QBF) extend the canonical NP-complete satisfiability problem by including Boolean quantifiers. Determining the truth of a QBF is PSPACE-complete; this is expected to be a harder problem than satisfiability, and hence QBF solving has much wider applications in practice. QBF proof complexity forms the theoretical basis for understanding QBF solving, as well as providing insights into more general complexity theory, but is less well understood than propositional proof complexity. We begin this thesis by looking at the reasons underlying QBF hardness, and in particular when the hardness is propositional in nature, rather than arising due to the quantifiers. We introduce relaxing QU-Res, a previous model for identifying such propositional hardness, and construct an example where relaxing QU-Res is unsuccessful in this regard. We then provide a new model for identifying such hardness which we prove captures this concept. Now equipped with a means of identifying ‘genuine’ QBF hardness, we prove a new lower bound technique for tree-like QBF proof systems. Lower bounds using this technique allows us to show a new separation between tree-like and dag-like systems. We give a characterisation of lower bounds for a large class of tree-like proof systems, in which such lower bounds play a prominent role. Further to the tree-like bound, we provide a new lower bound technique for QBF proof systems in general. This technique has some similarities to the above technique for tree-like systems, but requires some refinement to provide bounds for dag-like systems. We give applications of this new technique by proving lower bounds across several systems. The first such lower bounds are for a very simple family of QBFs. We then provide a construction to combine false QBFs to give formulas for which we can show lower bounds in this way, allowing the generation of the first random QBF proof complexity lower bounds
    corecore