9 research outputs found

    Easier Parallel Programming with Provably-Efficient Runtime Schedulers

    Get PDF
    Over the past decade processor manufacturers have pivoted from increasing uniprocessor performance to multicore architectures. However, utilizing this computational power has proved challenging for software developers. Many concurrency platforms and languages have emerged to address parallel programming challenges, yet writing correct and performant parallel code retains a reputation of being one of the hardest tasks a programmer can undertake. This dissertation will study how runtime scheduling systems can be used to make parallel programming easier. We address the difficulty in writing parallel data structures, automatically finding shared memory bugs, and reproducing non-deterministic synchronization bugs. Each of the systems presented depends on a novel runtime system which provides strong theoretical performance guarantees and performs well in practice

    Aikido: Accelerating shared data dynamic analyses

    Get PDF
    Despite a burgeoning demand for parallel programs, the tools available to developers working on shared-memory multicore processors have lagged behind. One reason for this is the lack of hardware support for inspecting the complex behavior of these parallel programs. Inter-thread communication, which must be instrumented for many types of analyses, may occur with any memory operation. To detect such thread communication in software, many existing tools require the instrumentation of all memory operations, which leads to significant performance overheads. To reduce this overhead, some existing tools resort to random sampling of memory operations, which introduces false negatives. Unfortunately, neither of these approaches provide the speed and accuracy programmers have traditionally expected from their tools. In this work, we present Aikido, a new system and framework that enables the development of efficient and transparent analyses that operate on shared data. Aikido uses a hybrid of existing hardware features and dynamic binary rewriting to detect thread communication with low overhead. Aikido runs a custom hypervisor below the operating system, which exposes per-thread hardware protection mechanisms not available in any widely used operating system. This hybrid approach allows us to benefit from the low cost of detecting memory accesses with hardware, while maintaining the word-level accuracy of a software-only approach. To evaluate our framework, we have implemented an Aikido-enabled vector clock race detector. Our results show that the Aikido enabled race-detector outperforms existing techniques that provide similar accuracy by up to 6.0x, and 76% on average, on the PARSEC benchmark suite.National Science Foundation (U.S.) (NSF grant CCF-0832997)National Science Foundation (U.S.) (DOE SC0005288)United States. Defense Advanced Research Projects Agency (DARPA HR0011-10- 9-0009

    MetaFork: A Compilation Framework for Concurrency Models Targeting Hardware Accelerators

    Get PDF
    Parallel programming is gaining ground in various domains due to the tremendous computational power that it brings; however, it also requires a substantial code crafting effort to achieve performance improvement. Unfortunately, in most cases, performance tuning has to be accomplished manually by programmers. We argue that automated tuning is necessary due to the combination of the following factors. First, code optimization is machine-dependent. That is, optimization preferred on one machine may be not suitable for another machine. Second, as the possible optimization search space increases, manually finding an optimized configuration is hard. Therefore, developing new compiler techniques for optimizing applications is of considerable interest. This thesis aims at generating new techniques that will help programmers develop efficient algorithms and code targeting hardware acceleration technologies, in a more effective manner. Our work is organized around a compilation framework, called MetaFork, for concurrency platforms and its application to automatic parallelization. MetaFork is a high-level programming language extending C/C++, which combines several models of concurrency including fork-join, SIMD and pipelining parallelism. MetaFork is also a compilation framework which aims at facilitating the design and implementation of concurrent programs through four key features which make MetaFork unique and novel: (1) Perform automatic code translation between concurrency platforms targeting multi-core architectures. (2) Provide a high-level language for expressing concurrency as in the fork-join model, the SIMD paradigm and the pipelining parallelism. (3) Generate parallel code from serial code with an emphasis on code depending on machine or program parameters (e.g. cache size, number of processors, number of threads per thread block). (4) Optimize code depending on parameters that are unknown at compile-time

    On the Interoperability of Programming Languages based on the Fork-Join Parallelism Model

    Get PDF
    This thesis describes the implementation of MetaFork, a meta-language for concurrency platforms targeting multicore architectures. First of all, MetaFork is a multithreaded language based on the fork-join model of concurrency: it allows the programmer to express parallel algorithms assuming that tasks are dynamically scheduled at run-time. While MetaFork makes no assumption about the run-time system, it formally defines the serial C-elision of a MetaFork program. In addition, MetaFork is a suite of source-to-source compilers permitting the automatic translation of multithreaded programs between programming languages based on the fork-join model. Currently, this compilation framework supports the OpenMP and CilkPlus concurrency platforms. The implementation of those compilers explicitly manages parallelism according to the directives specified in MetaFork, OpenMP and CilkPlus. We evaluate experimentally the benefits of MetaFork. First, we show that this framework can be used to perform comparative implementation of a given multi- threaded algorithm so as to narrow performance bottlenecks in one implementation of this algorithm. Secondly, we show that the translation of hand written and highly optimized code within MetaFork generally produces code with similar performance as the original

    Survey of Novel Programming Models for Parallelizing Applications at Exascale

    Get PDF

    Locality Awareness for Task Parallel Computation

    Get PDF
    The task parallel programming model allows programmers to express concurrency at a high level of abstraction and places the burden of scheduling parallel execution on the run time system. Efficient scheduling of tasks on multi-socket multicore shared memory systems requires careful consideration of an increasingly complex memory hierarchy, including shared caches and non-uniform memory access (NUMA) characteristics. In this dissertation, we study the performance impact of these issues and other performance factors that limit parallel speedup in task parallel program executions and propose new scheduling strategies to improve performance. Our performance model characterizes lost efficiency in terms of overhead time, idle time, and work time inflation due to increased data access costs. We introduce a hierarchical run time scheduler that combines the benefits of work stealing and parallel depth-first schedulers. Matching the scheduler design to the memory hierarchy of multicore NUMA systems limits costly remote data accesses while maintaining load balance and exploiting constructive data sharing among threads that share a cache. We also propose a locality- based scheduling framework based on locality domains and comprising an API for programmers to specify application locality and a scheduler that honors those specifications. Implementations of the hierarchical and locality-based schedulers in our OpenMP run time system exhibit performance improvements on several task parallel benchmark applications over existing scheduling strategies and production OpenMP run time systems.Doctor of Philosoph

    Dynamic Data Race Detection for Structured Parallelism

    Get PDF
    With the advent of multicore processors and an increased emphasis on parallel computing, parallel programming has become a fundamental requirement for achieving available performance. Parallel programming is inherently hard because, to reason about the correctness of a parallel program, programmers have to consider large numbers of interleavings of statements in different threads in the program. Though structured parallelism imposes some restrictions on the programmer, it is an attractive approach because it provides useful guarantees such as deadlock-freedom. However, data races remain a challenging source of bugs in parallel programs. Data races may occur only in few of the possible schedules of a parallel program, thereby making them extremely hard to detect, reproduce, and correct. In the past, dynamic data race detection algorithms have suffered from at least one of the following limitations: some algorithms have a worst-case linear space and time overhead, some algorithms are dependent on a specific scheduling technique, some algorithms generate false positives and false negatives, some have no empirical evaluation as yet, and some require sequential execution of the parallel program. In this thesis, we introduce dynamic data race detection algorithms for structured parallel programs that overcome past limitations. We present a race detection algorithm called ESP-bags that requires the input program to be executed sequentially and another algorithm called SPD3 that can execute the program in parallel. While the ESP-bags algorithm addresses all the above mentioned limitations except sequential execution, the SPD3 algorithm addresses the issue of sequential execution by scaling well across highly parallel shared memory multiprocessors. Our algorithms incur constant space overhead per memory location and time overhead that is independent of the number of processors on which the programs execute. Our race detection algorithms support a rich set of parallel constructs (including async, finish, isolated, and future) that are found in languages such as HJ, X10, and Cilk. Our algorithms for async, finish, and future are precise and sound for a given input. In the presence of isolated, our algorithms are precise but not sound. Our experiments show that our algorithms (for async, finish, and isolated) perform well in practice, incurring an average slowdown of under 3x over the original execution time on a suite of 15 benchmarks. SPD3 is the first practical dynamic race detection algorithm for async-finish parallel programs that can execute the input program in parallel and use constant space per memory location. This takes us closer to our goal of building dynamic data race detectors that can be "always-on" when developing parallel applications
    corecore