3,088 research outputs found

    A low-cost hyperspectral scanner for natural imaging and the study of animal colour vision above and under water

    Get PDF
    Hyperspectral imaging is a widely used technology for industrial and scientific purposes, but the high cost and large size of commercial setups have made them impractical for most basic research. Here, we designed and implemented a fully open source and low-cost hyperspectral scanner based on a commercial spectrometer coupled to custom optical, mechanical and electronic components. We demonstrate our scanner's utility for natural imaging in both terrestrial and underwater environments. Our design provides sub-nm spectral resolution between 350-950 nm, including the UV part of the light spectrum which has been mostly absent from commercial solutions and previous natural imaging studies. By comparing the full light spectra from natural scenes to the spectral sensitivity of animals, we show how our system can be used to identify subtle variations in chromatic details detectable by different species. In addition, we have created an open access database for hyperspectral datasets collected from natural scenes in the UK and India. Together with comprehensive online build- and use-instructions, our setup provides an inexpensive and customisable solution to gather and share hyperspectral imaging data

    Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    Full text link
    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and spectral characterization. However, differential aberrations between the ExAO sensing path and the science path represent a critical limitation for the detection of giant planets with a contrast lower than a few 10−610^{-6} at very small separations (<0.3\as) from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase contrast methods to circumvent this issue and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental and simulation results are consistent, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. We then corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements. We estimated a contrast gain of 10 in the coronagraphic image at 0.2\as, reaching the raw contrast limit set by the coronagraph in the instrument. The simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the on-line measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could ease the observation of the cold gaseous or massive rocky planets around nearby stars.Comment: 13 pages, 12 figures, A&A accepted on June 3rd, 2016. v2 after language editin

    Adaptive use of thresholding and multiple colour space representation to improve classification of MMCC barcode

    Get PDF
    Colour 2D barcodes, such as the MMCC barcode, have been developed recently to improve the data capacity of monochrome barcodes. However, the use of colour imposes greater challenges in decoding the symbols correctly as different lighting conditions on the barcode vary the values of the colours significantly. Hence, it is desirable to have an adaptive classification of the data cells so as to adapt to various lighting conditions. In this paper, we propose a classification method that is able to adapt to different lighting conditions during the classification of the MMCC data cells in a mobile environment. To highlight the effectiveness of this method, it is compared against the classification of the data cells performed in two different colour space representations, namely RGB and YCbCr
    • …
    corecore