5 research outputs found

    Calibration and removal of lateral chromatic aberration in images

    Get PDF
    This paper addresses the problem of compensating for lateral chromatic aberration in digital images through colour plane realignment. Two main contributions are made: the derivation of a model for lateral chromatic aberration in images, and the subsequent calibration of this model from a single view of a chess pattern. These advances lead to a practical and accurate alternative for the compensation of lateral chromatic aberrations. Experimental results validate the proposed models and calibration algorithm. The effects of colour channel correlations resulting from the camera colour filter array interpolation is examined and found to have a negligible magnitude relative to the chromatic aberration. Results with real data show how the removal of lateral chromatic aberration significantly improves the colour quality of the image

    AAM: An Assessment Metric of Axial Chromatic Aberration

    Get PDF
    Knowledge of lens specifications is important to identify the best lens for a given capture scenario and application. Lens manufacturers provide many specifications in their data sheets, and multiple initiatives for testing and comparing different lenses can be found online. However, due to the lack of a suitable metric or technique, no evaluation of axial chromatic aberration is available. In this paper, we propose a metric, Axial Aberration Magnitude or AAM, that assesses the degree of axial chromatic aberration of a given lens. Our metric is generalizable to multispectral acquisition systems and is very simple and cheap to compute. We present the entire procedure and algorithm for computing the AAM metric, and evaluate it for two spectral systems and two consumer lenses

    Forum Bildverarbeitung 2012

    Get PDF
    Bildverarbeitung spielt in vielen Bereichen der Technik zur effizienten und objektiven Informationserfassung eine Schlüsselrolle und hat sich in vielen Anwendungen einen unverzichtbaren Platz erobert. Von besonderer Bedeutung ist dabei eine zielführende Verarbeitung der erfassten Bildsignale. Das "Forum Bildverarbeitung 2012" greift diese hochaktuellen Entwicklungen sowohl hinsichtlich der theoretischen Grundlagen, Beschreibungsansätze und Werkzeuge als auch relevanter Anwendungen auf

    Optical System Identification for Passive Electro-Optical Imaging

    Full text link
    A statistical inverse-problem approach is presented for jointly estimating camera blur from aliased data of a known calibration target. Specifically, a parametric Maximum Likelihood (ML) PSF estimate is derived for characterizing a camera's optical imperfections through the use of a calibration target in an otherwise loosely controlled environment. The unknown parameters are jointly estimated from data described by a physical forward-imaging model, and this inverse-problem approach allows one to accommodate all of the available sources of information jointly. These sources include knowledge of the forward imaging process, the types and sources of statistical uncertainty, available prior information, and the data itself. The forward model describes a broad class of imaging systems based on a parameterization with a direct mapping between its parameters and physical imaging phenomena. The imaging perspective, ambient light-levels, target-reflectance, detector gain and offset, quantum-efficiency, and read-noise levels are all treated as nuisance parameters. The Cram'{e}r-Rao Bound (CRB) is derived under this joint model, and simulations demonstrate that the proposed estimator achieves near-optimal MSE performance. Finally, the proposed method is applied to experimental data to validate both the fidelity of the forward-models, as well as to establish the utility of the resulting ML estimates for both system identification and subsequent image restoration.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153395/1/jwleblan_1.pd
    corecore