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ABSTRACT

Knowledge of lens specifications is important to identify
the best lens for a given capture scenario and application.
Lens manufacturers provide many specifications in their data
sheets, and multiple initiatives for testing and comparing
different lenses can be found online. However, due to the
lack of a suitable metric or technique, no evaluation of axial
chromatic aberration is available.

In this paper, we propose a metric, Axial Aberration Mag-
nitude or AAM, that assesses the degree of axial chromatic
aberration of a given lens. Our metric is generalizable to mul-
tispectral acquisition systems and is very simple and cheap to
compute. We present the entire procedure and algorithm for
computing the AAM metric, and evaluate it for two spectral
systems and two consumer lenses.

Index Terms— Axial chromatic aberration, lens assess-
ment metric, chromatic aberration blur.

1. INTRODUCTION

Chromatic aberration is present in all camera systems to dif-
ferent extents. Chromatic aberrations are caused by disper-
sion, as the refractive index of a lens is non-linearly wave-
length dependent. Every acquired wavelength λ has a differ-
ent refractive index n(λ) and is thus deviated by a different
angle [1, 2]. The result is that every wavelength has its own
focal length f(λ) and power P (λ) given by the lens makers’
formula [3]:

P (λ) =
1

f(λ)
= (n(λ)− 1)

(
1

ε1
− 1

ε2

)
, (1)

making it focus at a different distance from the lens whose
curvature radii are ε1 and ε2. As this leads to discrepancies in
image focus across different channels and to color fringing,
lens manufacturers attempt to correct for chromatic aberra-
tion by aligning multiple lens elements with complementary
dispersion properties. This leads to three general categories
of lenses defined by their chromatic correction, namely apoc-
hromatic, achromatic and superachromatic, the latter being
designed to also correct for near-infrared (NIR) wavelengths
up to 1000 nm [1, p. 105].

Chromatic aberration has undesirable visual artifacts [4–
6], and can be a challenge to multispectral applications where

Lens Sensor Plane

(a) Visualization of lateral chromatic aberration

fB

Lens Sensor Plane

fG fR fNIR

Blur Circles

(b) Visualization of axial chromatic aberration, with green and blue blur circles

Fig. 1. Behind the lens, black rays correspond to NIR, and
colored rays correspond to their own colors. (a) Lateral chro-
matic aberration causes color fringing, due to shifted blur cir-
cles across the sensor. (b) Axial chromatic aberration seen as
different blur radius sizes for different spectral channels.

spatial matching between channels is important [7]. However,
it can also be useful in deblurring for multispectral systems
having acquisition channels with shifted focus depth [2, 8, 9]
by transferring high frequencies from one channel to another.

Chromatic aberrations are either axial (longitudinal) or
lateral (transverse) chromatic aberrations (Fig. 1). Axial
chromatic aberration is best visualized by the difference in
blur radii on the sensor plane of two incident rays of different
wavelengths along the optical axis of the lens. It causes color
spilling with different degrees depending on the wavelength.
Lateral chromatic aberration is the dispersion of rays arriving
obliquely to the lens, mostly seen around the edges of an
image and causing color fringing.

Considerable effort has been and is still being extended
to understand axial chromatic aberration in the human visual
system [10–13]. However, a metric for camera systems is still
lacking. As stated in their documentation, quality assessment
solutions such as imatest [14] or DxOMark [15] can evalu-
ate lateral aberration on standard ISO charts or dot charts,
respectively, but not axial aberration. Due to the lack of an
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Fig. 2. One out-of-focus image of our slanted edge target. By
detecting the four disks, we delimit a central region that only
contains the slanted edge and extract it for processing.

evaluation metric for the latter, lens reviewers and photogra-
phers have no means to assess and compare lenses based on
the magnitude of their axial chromatic aberration.

In this paper, we propose a novel metric called Axial
Aberration Magnitude (AAM). This metric is designed to be
simple, reproducible and generalizable to multispectral sys-
tem evaluation. It is parametrized to assess axial chromatic
aberration magnitude for different depth ranges of interest.
The AAM computes the magnitude of the point spread func-
tion (PSF) as a function of depth and compares its deviation
across the captured spectral channels. A simple slanted edge
printed using a regular printer suffices to compute the AAM
of a lens, since what is of importance are the relative blur
magnitudes between spectral channels and not the absolute
per-channel sharpness performance.

Section 2 presents the acquisition details to obtain all the
data needed to compute the AAM. Section 3 discusses the
mathematical foundation of the AAM metric. Section 4 ex-
plains the full procedure and links between practice and the
theory developed in Section 3. And lastly, results on two com-
mercial lenses are reported in Section 5.

2. DATA ACQUISITION

An essential objective is to make the AAM metric easily re-
producible. We rely on inexpensive hardware, simple setups
and codes and data used in this paper are made publicly avail-
able1.

To evaluate the degree of axial chromatic aberration of
a lens, a comparison of PSFs in different spectral channels
needs to be conducted across a range of depth (camera-to-
scene distance). For a simple yet realistic metric, we follow
the assumption of a symmetric Gaussian PSF [16–21]. To es-
timate the scale of the PSF, we take pictures of an A4 paper

1github.com/duembgen/aam icip18 // infoscience.epfl.ch/record/255464?

with a sharp slanted edge oriented at 5 degrees away from the
vertical. The sharp edge is created between two almost black
and white regions; we use more greyish colors to avoid poten-
tial camera sensor saturation that might affect the assessment.
Four disks are also printed symmetrically on the borders of
the paper to automate the localization of the edge region. The
camera is stabilized on a tripod. We vary the distance separat-
ing the slanted edge and the camera, as described in Section
4, thus capturing a sequence of images. Then, we detect the
four disks in every image to localize the paper and delimit
the region of interest in which only the slanted edge is visi-
ble. Acquisition is carried out under the illumination of two
reflector-equipped light sources, positioned symmetrically at
45-degree angles (to the left and right sides of the camera) to
reduce specular reflections.

With the extracted edge data, we follow the ISO 12233
procedure [22] to obtain edge spread functions (ESF). We
compute the ESF for every image at every depth, but also for
every spectral channel. We differentiate the obtained ESFs
along the horizontal dimension to get the corresponding line
spread functions (LSF). With the assumption of a symmetric
PSF, we only need to evaluate the PSF scale in one direc-
tion, horizontally in our case, thus the vertical slanted edge
is enough to estimate the scale of the PSF. Each LSF is then
fitted to a one-dimensional Gaussian distribution, from which
we retain the standard deviation as a measure of scale. We
finally obtain, as a function of object-camera distance, PSF
scale values for every spectral channel. The PSF curves can
be seen in Fig. 3 for two different lenses, and for the red (R),
green (G), blue (B) and near-infrared (NIR) spectral channels.
These PSF curves are analyzed in Section 3 to compute the
AAM metric for a given lens and set of multispectral chan-
nels.

3. MATHEMATICAL FOUNDATION

We denote the PSF radius in channel Λi by ri, where ri(x) is
the radius at scene depth x. The radius for a given distance is
estimated in practice as the standard deviation of a Gaussian
distribution fitted to the LSF, as explained in Section 2. This
can be done because both variables are directly proportional.
The difference δα(Λi,Λj) between two PSF radii curves in
two channels Λi and Λj is computed as the norm of the dif-
ference between the curves in question:

δα(Λi,Λj) = ||ri − rj ||2 = 〈ri − rj , ri − rj〉

=

∫ bij

aij

[ri(x)− rj(x)]2dx,
(2)

and the integral limits are given by:{
aij = (1− α) ∗min(x0i , x

0
j )

bij = (1 + α) ∗max(x0i , x
0
j ),

(3)
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Fig. 3. PSF radius as a function of depth for R, G, B, and NIR, obtained for the lenses: Canon EF 50mm f/2.5 (left) and Canon
EF 50mm f/1.8 I (right). The curves are in the corresponding colors for visible bands and in black for NIR. PSF radii are
estimated as the standard deviation of a Gaussian curve fitted to the LSF, as explained in Section 2. We can see, for example
inside the grey rectangles of equal size on both figures, that the left lens has less axial aberration as the NIR blur is closer to that
of the color channels. The difference is harder to visualize between the color channels, but the focal depths are closer to each
other for the f/2.5 lens. The shortest-wavelength channel (blue) is focused at 1.5m, and dM = x0NIR in our case (Section 4).

where α is a positive parameter smaller than 1 and x0i and
x0j are the focal plane depths for channels Λi and Λj , respec-
tively. We normalize δα to get the average difference:

δ̄α(Λi,Λj) =
1

bij − aij

∫ bij

aij

[ri(x)− rj(x)]2dx. (4)

The depth range over which we evaluate the difference
between two channels extends around their focal planes. The
larger α is, the wider the evaluation range. We intentionally
use an asymmetric range around the focal planes to account
for the asymmetry of PSF curves (Eq. (6)). The decrease in
blur when moving towards the focal depth and away from the
camera is faster than its increase when moving beyond the
focal depth (Fig. 3). Therefore, the range defined in Eq. (3)
is not symmetric with respect to the midpoint between x0i and
x0j , to account for the asymmetry. We thus use a relatively
wider range α ∗ max(x0i , x

0
j ) in the back compared to α ∗

min(x0i , x
0
j ) in the front. Our AAM metric for a multispectral

system acquiring a set ofN spectral channels {Λ1, ...,ΛN} is
given by:

AAMα(Λ1, ...,ΛN ) = log10

 1

|M|
∑
i,j∈M

δ̄α(Λi,Λj)

 ,

(5)
whereM = {i, j ∈ N|1 ≤ i < j ≤ N} and the operator | · |
stands for the cardinality of a set. Different lenses can cor-
rect for axial chromatic aberration to different extents at dif-
ferent wavelengths, thus a channel with longer wavelengths
could end up focusing at a shallower depth than a channel
with a shorter wavelength. For this reason, we evaluate the

distance in the PSF curves of every pair of two spectral chan-
nels. We lastly normalize by the number of channel pairs to
have a fair comparison between multispectral systems with
the same band of acquired wavelengths but a different num-
ber of acquisition channels.

4. EVALUATION ALGORITHM

To obtain the AAM metric results for a given lens and mul-
tispectral system, we apply the following procedure, with the
camera placed on a slider:

1- Open the camera aperture to a small f-stop (≈) 2.5, thus
magnifying axial chromatic aberration effects by magnifying
defocus blur variation with depth. This allows the simulation
of large depth ranges with much smaller ones. Smaller aper-
tures (i.e. larger f-stop values) can be used when an f-stop of
2.5 is not an option.

2- Focus the spectral channel with shortest wavelength on
a 5-degree slanted edge placed 1.5m away (to have enough
margin to get closer), and in the center of the scene.

3- Increase the camera-to-edge distance, without refocus-
ing the camera, until the channel with the longest wavelength
values is in focus. Call the corresponding distance dM .

4- Change the camera-to-edge distance from 1m to
1.5∗dM , with uniform steps of 0.05m at most, capturing a
photo at every step, also without refocusing the camera.

5- Compute the PSF radii at every depth and for every
spectral channel as described in Section 2.

6- Compute the AAM metric for varying α values as
given by Eq. (9) for the desired group of spectral channels.



For a standard approach that is more robust to Gaussian
sampling errors, such as inaccuracies in exact distances of
acquisition or in PSF radius estimation, we begin by a least
squares fitting of every PSF plot. We choose to fit the curves
to a polynomial of degree five as this fitting is easy to inte-
grate, turning the integration into a sum, and is also general-
izable to complex lenses obeying different lens blur models.
The PSF radius of a lens (assuming a simple lens model) as a
function of depth x and wavelength λ is given by:

rSimpleLens(x, λ) = L

∣∣∣∣1− d

f(λ)
+
d

x

∣∣∣∣ , (6)

where the focal length is f(λ), L is the aperture radius, and d
is the distance between the simple lens and the camera sensor.
However, this function is different for more complex cameras
with multiple consecutive lenses, hence the utility of using
a polynomial fit to estimate the PSF radius as a function of
depth. AAMα can then be simply computed on the polyno-
mial coefficients. The squared difference [ri(x) − rj(x)]2 in
Eq. (4) can thus be evaluated as:

[ri(x)− rj(x)]2 =

10∑
w=0

dijwx
w, (7)

where dijw =
∑
u+v=w cijucijv , with the set of coefficients

{cij} being the difference between the coefficients of ri(x)
and rj(x), i.e. {cij} are the coefficients of the polynomial
(ri(x) − rj(x)). Substituting Eq. (7) into Eq. (4) results in
the average distance between two PSF curves:

δ̄α(Λi,Λj) =
1

bij − aij

11∑
w=1

dijw−1

w
(bwij − awij), (8)

hence AAMα(Λ1, ...,ΛN )

= log10

 ∑
i,j∈M

1

|M|

(
11∑
w=1

dijw−1
(bwij − awij)

w(bij − aij)

) , (9)

which we compute for multiple camera settings, α values,
multispectral bands, and lenses in the following section.
Lastly, the values of aij and bij depend on x0i and x0j which
correspond physically to the camera-object distance with
minimal axial-aberration blur for channels Λi and Λj . We
estimate x0i from the polynomially-fitted PSF curves as:

x0i = argmin(ri(x)). (10)

The smaller the AAM value is for a given depth range
and multispectral combination, the stronger is the correction
of the acquisition system against axial chromatic aberration.
The following section reports the results obtained for two con-
sumer lenses and RGB as well as RGB-NIR channels.

5. RESULTS

We follow the procedure presented in Section 4 to compute
our AAM metric for different lenses, using a Canon Mark II
camera. The AAM is computed for different values of α to
assess the aberration magnitude for different scales of depth
range in captured scenes. The results are reported in Tables 1
and 2 for the AAM of RGB channels and of RGB-NIR chan-
nels, respectively. The NIR channel is acquired by physically
replacing the NIR-blocking filter with a visible-light-blocking
filter.

Table 1. AAMα(R,G,B) values as a function of α for two
lenses, using an f-stop of 2.5.

α 0.2 0.35 0.5
Canon EF 50mm f/2.5 0.87 1.66 2.34

Canon EF 50mm f/1.8 I 2.97 3.55 4.09

Table 2. AAMα(R,G,B,NIR) values as a function of α
for two lenses, using an f-stop of 2.5.

α 0.2 0.35 0.5
Canon EF 50mm f/2.5 5.59 6.21 6.78

Canon EF 50mm f/1.8 I 5.83 6.44 7.00

We can see that for all lenses and for all spectral channel
groups considered, the magnitude of axial chromatic aberra-
tion increases the more we move away from the focal plane
depths where the channels are most in focus. Indeed, for
larger α values, corresponding to a larger depth range of eval-
uation, theAAM is consistently larger. For shallow capture, a
lens with low AAM for small α is desirable for minimal aber-
ration. For capture with deeper scenery, a low AAM for large
α is more important. In our case, the Canon EF 50mm f/2.5 is
preferable. The opposite is true if high frequency spectral fu-
sion is desired, (e.g. depth-of-field extension or deblurring),
where axial aberration can be leveraged [2, 8, 9]. We can vi-
sually verify in Fig. 3 that the f/2.5 lens converges the NIR
closer to the color bands compared to the f/1.8 lens. The vi-
sual verification between color channels is harder to make.

We do not have assessment comparisons with other meth-
ods as our approach is, to the best of our knowledge, the first
evaluation metric for axial chromatic aberration.

6. CONCLUSION

We introduce a novel assessment metric for lenses. Our AAM
metric measures the magnitude of axial chromatic aberration
of a lens, between any number of multispectral channels and
for different degrees of scene depth range.

The AAM metric is designed to be easily and cheaply re-
producible, simply requiring in terms of equipment a slanted
edge that can be printed using a regular printer.
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