111,483 research outputs found

    Towards a Unified Knowledge-Based Approach to Modality Choice

    Get PDF
    This paper advances a unified knowledge-based approach to the process of choosing the most appropriate modality or combination of modalities in multimodal output generation. We propose a Modality Ontology (MO) that models the knowledge needed to support the two most fundamental processes determining modality choice – modality allocation (choosing the modality or set of modalities that can best support a particular type of information) and modality combination (selecting an optimal final combination of modalities). In the proposed ontology we model the main levels which collectively determine the characteristics of each modality and the specific relationships between different modalities that are important for multi-modal meaning making. This ontology aims to support the automatic selection of modalities and combinations of modalities that are suitable to convey the meaning of the intended message

    Introduction of interactive learning into French university physics classrooms

    Full text link
    We report on a project to introduce interactive learning strategies (ILS) to physics classes at the Universit\'e Pierre et Marie Curie (UPMC), one of the leading science universities in France. In Spring 2012, instructors in two large introductory classes, first-year, second-semester mechanics, and second-year introductory E&M, enrolling approximately 500 and 250 students respectively, introduced ILS into some sections of each class. The specific ILS utilized were Think-Pair-Share questions and Peer Instruction in the main lecture classrooms, and UW Tutorials for Introductory Physics in recitation sections. Pre- and post-instruction assessments (FCI and CSEM respectively) were given, along with a series of demographics questions. We were able to compare the results of the FCI and CSEM between interactive and non-interactive classes taught simultaneously with the same curriculum. We also analyzed final exam results, as well as the results of student and instructor attitude surveys between classes. In our analysis, we argue that Multiple Linear Regression modeling is superior to other common analysis tools, including normalized gain. Our results show that ILS are effective at improving student learning by all measures used: research-validated concept inventories and final exam scores, on both conceptual and traditional problem-solving questions. Multiple Linear Regression analysis reveals that interactivity in the classroom is a significant predictor of student learning, showing a similar or stronger relationship with student learning than such ascribed characteristics as parents' education, and achieved characteristics such as GPA and hours studied per week. Analysis of student and instructors attitudes shows that both groups believe that ILS improve student learning in the physics classroom, and increases student engagement and motivation

    A Project Based Approach to Statistics and Data Science

    Full text link
    In an increasingly data-driven world, facility with statistics is more important than ever for our students. At institutions without a statistician, it often falls to the mathematics faculty to teach statistics courses. This paper presents a model that a mathematician asked to teach statistics can follow. This model entails connecting with faculty from numerous departments on campus to develop a list of topics, building a repository of real-world datasets from these faculty, and creating projects where students interface with these datasets to write lab reports aimed at consumers of statistics in other disciplines. The end result is students who are well prepared for interdisciplinary research, who are accustomed to coping with the idiosyncrasies of real data, and who have sharpened their technical writing and speaking skills

    Using resource graphs to represent conceptual change

    Full text link
    We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of resources and coordination classes. It can represent mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we introduce a new form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the Physical Review Special Topics Physics Education Research on March 8, 200

    Conceptual Spaces in Object-Oriented Framework

    Get PDF
    The aim of this paper is to show that the middle level of mental representations in a conceptual spaces framework is consistent with the OOP paradigm. We argue that conceptual spaces framework together with vague prototype theory of categorization appears to be the most suitable solution for modeling the cognitive apparatus of humans, and that the OOP paradigm can be easily and intuitively reconciled with this framework. First, we show that the prototypebased OOP approach is consistent with Gärdenfors’ model in terms of structural coherence. Second, we argue that the product of cloning process in a prototype-based model is in line with the structure of categories in Gärdenfors’ proposal. Finally, in order to make the fuzzy object-oriented model consistent with conceptual space, we demonstrate how to define membership function in a more cognitive manner, i.e. in terms of similarity to prototype
    corecore