48 research outputs found

    Beyond Ohba's Conjecture: A bound on the choice number of kk-chromatic graphs with nn vertices

    Get PDF
    Let ch(G)\text{ch}(G) denote the choice number of a graph GG (also called "list chromatic number" or "choosability" of GG). Noel, Reed, and Wu proved the conjecture of Ohba that ch(G)=χ(G)\text{ch}(G)=\chi(G) when V(G)2χ(G)+1|V(G)|\le 2\chi(G)+1. We extend this to a general upper bound: ch(G)max{χ(G),(V(G)+χ(G)1)/3}\text{ch}(G)\le \max\{\chi(G),\lceil({|V(G)|+\chi(G)-1})/{3}\rceil\}. Our result is sharp for V(G)3χ(G)|V(G)|\le 3\chi(G) using Ohba's examples, and it improves the best-known upper bound for ch(K4,,4)\text{ch}(K_{4,\dots,4}).Comment: 14 page

    Extended core and choosability of a graph

    Full text link
    A graph GG is (a,b)(a,b)-choosable if for any color list of size aa associated with each vertices, one can choose a subset of bb colors such that adjacent vertices are colored with disjoint color sets. This paper shows an equivalence between the (a,b)(a,b)-choosability of a graph and the (a,b)(a,b)-choosability of one of its subgraphs called the extended core. As an application, this result allows to prove the (5,2)(5,2)-choosability and (7,3)(7,3)-colorability of triangle-free induced subgraphs of the triangular lattice.Comment: 10 page

    A Solution to the 1-2-3 Conjecture

    Full text link
    We show that for every graph without isolated edge, the edges can be assigned weights from {1,2,3} so that no two neighbors receive the same sum of incident edge weights. This solves a conjecture of Karo\'{n}ski, Luczak, and Thomason from 2004.Comment: 16 page

    List-coloring and sum-list-coloring problems on graphs

    Get PDF
    Graph coloring is a well-known and well-studied area of graph theory that has many applications. In this dissertation, we look at two generalizations of graph coloring known as list-coloring and sum-list-coloring. In both of these types of colorings, one seeks to first assign palettes of colors to vertices and then choose a color from the corresponding palette for each vertex so that a proper coloring is obtained. A celebrated result of Thomassen states that every planar graph can be properly colored from any arbitrarily assigned palettes of five colors. This result is known as 5-list-colorability of planar graphs. Albertson asked whether Thomassen\u27s theorem can be extended by precoloring some vertices which are at a large enough distance apart. Hutchinson asked whether Thomassen\u27s theorem can be extended by allowing certain vertices to have palettes of size less than five assigned to them. In this dissertation, we explore both of these questions and answer them in the affirmative for various classes of graphs. We also provide a catalog of small configurations with palettes of different prescribed sizes and determine whether or not they can always be colored from palettes of such sizes. These small configurations can be useful in reducing certain planar graphs to obtain more information about their structure. Additionally, we look at the newer notion of sum-list-coloring where the sum choice number is the parameter of interest. In sum-list-coloring, we seek to minimize the sum of varying sizes of palettes of colors assigned the vertices of a graph. We compute the sum choice number for all graphs on at most five vertices, present some general results about sum-list-coloring, and determine the sum choice number for certain graphs made up of cycles

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric
    corecore