13,506 research outputs found

    On the constrained mock-Chebyshev least-squares

    Full text link
    The algebraic polynomial interpolation on uniformly distributed nodes is affected by the Runge phenomenon, also when the function to be interpolated is analytic. Among all techniques that have been proposed to defeat this phenomenon, there is the mock-Chebyshev interpolation which is an interpolation made on a subset of the given nodes whose elements mimic as well as possible the Chebyshev-Lobatto points. In this work we use the simultaneous approximation theory to combine the previous technique with a polynomial regression in order to increase the accuracy of the approximation of a given analytic function. We give indications on how to select the degree of the simultaneous regression in order to obtain polynomial approximant good in the uniform norm and provide a sufficient condition to improve, in that norm, the accuracy of the mock-Chebyshev interpolation with a simultaneous regression. Numerical results are provided.Comment: 17 pages, 9 figure

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure

    Accelerated filtering on graphs using Lanczos method

    Get PDF
    Signal-processing on graphs has developed into a very active field of research during the last decade. In particular, the number of applications using frames constructed from graphs, like wavelets on graphs, has substantially increased. To attain scalability for large graphs, fast graph-signal filtering techniques are needed. In this contribution, we propose an accelerated algorithm based on the Lanczos method that adapts to the Laplacian spectrum without explicitly computing it. The result is an accurate, robust, scalable and efficient algorithm. Compared to existing methods based on Chebyshev polynomials, our solution achieves higher accuracy without increasing the overall complexity significantly. Furthermore, it is particularly well suited for graphs with large spectral gaps

    Two curve Chebyshev approximation and its application to signal clustering

    Get PDF
    In this paper we extend a number of important results of the classical Chebyshev approximation theory to the case of simultaneous approximation of two or more functions. The need for this extension is application driven, since such kind of problems appears in the area of curve (signal) clustering. In this paper we propose a new efficient algorithm for signal clustering and develop a procedure that allows one to reuse the results obtained at the previous iteration without recomputing the cluster centres from scratch. This approach is based on the extension of the classical de la Vallee-Poussin's procedure originally developed for polynomial approximation. In this paper, we also develop necessary and sufficient optimality conditions for two curve Chebyshev approximation, that is our core tool for curve clustering. These results are based on application of nonsmooth convex analysis
    • …
    corecore