
Accelerated filtering on graphs using Lanczos
method

Ana Šušnjara1, Nathanaël Perraudin2, Daniel Kressner1, and Pierre
Vandergheynst2

1 ANCHP 2LTS2
Ecole Polytechnique

Fédérale de
Lausanne EPFL

Ecole Polytechnique
Fédérale de

Lausanne EPFL

Abstract

Signal-processing on graphs has developed into a very active field of research
during the last decade. In particular, the number of applications using frames con-
structed from graphs, like wavelets on graphs, has substantially increased. To at-
tain scalability for large graphs, fast graph-signal filtering techniques are needed.
In this contribution, we propose an accelerated algorithm based on the Lanczos
method that adapts to the Laplacian spectrum without explicitly computing it. The
result is an accurate, robust, scalable and efficient algorithm. Compared to existing
methods based on Chebyshev polynomials, our solution achieves higher accuracy
without increasing the overall complexity significantly. Furthermore, it is particu-
larly well suited for graphs with large spectral gaps. 1

Index terms— Spectral graph theory, graph signal-processing, graph filter, Chebyshev
polynomial, Lanczos method

1 Introduction
Graphs conveniently represent data on irregular geometric structures as they arise in
numerous application domains such as social, energy, transportation or neuronal net-
works. In all of these fields, different pieces of information are connected to each other
and these connections can be modelled by a graph. For every link, an edge is drawn
with an associated weight that represents the similarity between the two elements (ver-
tices) it connects. For example, in a sensor network acquiring environmental mea-
surements, it makes sense to choose the weight inversely proportional to the physical
distance. A data signal lives on nodes and can be visualized as a collection of samples.
We refer to those as graph-signals, see Figure 1 for an example.

This framework, called graph signal-processing, has recently become a general
field of research [16, 17] and applications of graph signal-processing can be found in
many different areas. In machine vision, automatic text classification or more generally

1The work of A. Šušnjara has been supported by the SNSF research project Low-rank updates of matrix
functions and fast eigenvalue solvers. The work of Nathanaël Perraudin has been supported by the SNF
research project Towards Signal Processing on Graphs, grant number: 2000_21/154350/1 .
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Figure 1: Synthesized sensor network. Colored circles represent vertices and gray links
represent edges. Values of the signal are displayed with different colors.

machine learning, graphs are used to represent similarities between data points and re-
sult in algorithms for semi-supervised learning [24, 19, 1, 23]. Graph signal-processing
is often used to leverage intrinsic links when processing data. For instance, many ap-
plications in image processing benefit from the use of graphs that describe connections
between local patches in the image (e.g. [13, 22] and references therein).

Spectral graph filtering is one of the basic building blocks in the applications dis-
cussed above. Classical filtering techniques rely on the Fourier transform, which can
be done inexpensively with a cost ofO(N log(N)). Extending this transform to graphs
requires the diagonalisation of the graph Laplacian, which becomes prohibitively ex-
pensive for larger graphs. To overcome this issue, an efficient approximate method to
perform spectral graph filtering was proposed in [10]. This method, based on Cheby-
shev polynomial approximation, only requires multiple application of the Laplacian
operator and thus leads to a scalable, efficient memory-saving and error-controlled al-
gorithm.

Instead of Chebyshev polynomial approximation, we propose to use the Lanczos
method to perform spectral graph filtering. The resulting algorithm is also scalable, in
addition to being superior in accuracy to its predecessor.

The rest of this article is organized as follows. In Section 2, we summarize the
basics of signal-processing on graphs, including the definition of graph filtering. We
also recall the method of Hammond et al. [10]. Section 3 describes the Lanczos method
and its application to graph filtering. Numerical experiments are presented in Section
4.

2



2 Signal-processing on graphs

2.1 Graph nomenclature
We consider a weighted undirected graph G = {V, E ,W} with a set of vertices V , a
set of edges E , and a weight functionW : V × V → R. The vertices are indexed from
1, . . . , N = |V| and each entry of the weight matrix W ∈ RN×N contains the weight
of the edge connecting the corresponding vertices: Wi,j = W(vi, vj). If there is no
edge between two vertices, the weight is set to 0. It is assumed that Wi,j = Wj,i, that
is, W is a symmetric matrix. For a vertex vi ∈ V , the degree d(i) is defined as the sum
of the weights of incident edges: d(i) =

∑N
j=1Wi,j .

In this framework, a graph signal is defined as a function s : V → R assigning a
value to each vertex. It is convenient to consider a signal s as a vector of size N with
the ith component representing the signal value at the ith vertex.

One of the most fundamental concepts for weighted undirected graphs is the (com-
binatorial) graph Laplacian L defined as L = D −W, where D is the diagonal degree
matrix with diagonal entries Dii = d(i). Alternative definitions of graph Laplacians
include the normalized Laplacian Ln = D

1
2LD 1

2 = D
1
2 (D −W )D

1
2 . For simplicity,

we restrict ourselves to L, but the method presented in this paper easily extends to other
Laplacians.

The Laplacian L is always symmetric positive semi-definite and can thus be de-
composed as

L = UΛU∗,

where U = [u0, . . . , uN−1] is an orthogonal matrix and U∗ denotes its transpose.
Without loss of generality, we order the set of eigenvalues as follows: 0 = λ0 ≤ λ1 ≤
... ≤ λN−1 = λmax; see [2] for more details on spectral graph theory. The matrix U
defines the graph Fourier basis [16, 17], leading to the graph Fourier transform ŝ = U∗s
and its inverse s = Uŝ.

2.2 Graph filters
In the classic setting, applying a filter to a signal is performed by convolution, which
corresponds to point-wise multiplication in the spectral domain. Similarly, filtering a
graph-signal is peformed by multiplication with a filter in the graph Fourier domain.
A graph filter is defined by a continuous function g : R+ → R. To obtain its discrete
coefficients, this function is evaluated at each eigenvalue: g(λ`) for ` = 0, . . . , N − 1.
The filtering operation then corresponds to ŝ′(`) = g(λ`) · ŝ(`), where s′ is the filtered
signal. Equivalently, using matrix notation, we have

s′ = Ug(Λ)U∗s, (1)

where g(Λ) is the diagonal matrix containing the coefficients g(λ`) on the diagonal.
In terms of matrix functions [11], the relation (1) can be compactly expressed as s′ =
g(L)s with g(L) := Ug(Λ)U∗.
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2.3 Fast filtering via Chebyshev polynomials
The graph filtering operation described above is based on the graph Fourier transform.
Unfortunately, the graph Fourier basis needed for performing this transform requires
the diagonalization of the graph Laplacian, which takesO(N3) operations andO(N2)
memory when using standard techniques. This is feasible for graphs with only a few
thousand vertices. To be able to tackle problems of larger size, more efficient methods
are needed, one of which is presented in [10] and summarized in this section.

Filtering in the vertex domain. To avoid the Fourier transform, we perform the
filtering operation in the vertex domain using only the Laplacian operator. Applying
this operator corresponds to multiplying the signal in the spectral domain with the
eigenvalues:

L̂s = Λŝ.

This is equivalent to filtering with g(x) = x. Using this relation recursively and ex-
ploiting linearity, we can apply any polynomial filter g(x) = a0 + a1x+ · · ·+ aKx

M

to a signal s with the following formula:

s′ = Ug(Λ)U∗s =
(
a0I + a1L+ · · ·+ aMLM

)
s. (2)

Chebyshev polynomial approximation. The ability to apply polynomial filters
efficiently suggests to approximate a given filter function with a suitable polynomial.
For approximating functions on real intervals, Chebyshev polynomials are usually the
preferred choice because of numerical stability considerations and the fact that they can
be evaluated efficiently by three-term recurrences. We refer to [10] for a more detailed
discussion on the choice of Chebyshev polynomials in signal-processing on graphs and
to, e.g., [14] for an introduction to polynomial approximation.

The mth Chebyshev polynomial Tm(y) is generated using the recurrence relation
Tm(y) = 2xTm−1(y) − Tm−1(y) with T0(y) = 1 and T1(y) = y. For y ∈ [−1, 1],
these polynomials possess the following well-known properties:

1. they admit the closed form expression Tm(y) = cos(m arccos(y));

2. they are bounded, i.e., Tm(y) ∈ [−1, 1];

3. they form an orthogonal basis of L2

(
[−1, 1], dy√

1−y2

)
.

The third property implies that every function h ∈ L2

(
[−1, 1], dy√

1−y2

)
admits a

convergent Chebyshev series

h(y) =
1

2
c0 +

∞∑
m=1

cmTm(y),

with the Chebyshev coefficients

ck =
2

π

∫ 1

−1

Tm(y)h(y)√
1− y2

dy =
2

π

∫ π

0

cos(kθ)h(cos(θ))dθ.
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Since our filter g is evaluated on the eigenvalues of the Laplacian, we need to map the
interval [−1, 1] to the interval [0, λmax] using the transformation x = λmax

2 (y + 1).

Defining T̃m(x) = Tm

(
2x
λmax

− 1
)

we obtain

g(x) =
1

2
c0 +

∞∑
m=1

cmT̃m(x) (3)

for x ∈ [0, λmax], with

cm =
2

π

∫ π

0

cos(mθ)g

(
λmax

2
(cos(θ) + 1)

)
dθ.

Fast filtering algorithm. At this point, we can derive the iterative algorithm for
filtering a signal s with g. The recurrence relation for the transformed Chebyshev
polynomials becomes T̃m(x) = 2

(
2x
λmax

− 1
)
T̃m−1(x) − T̃m−2(x). On the matrix

level, this yields, using (2):

T̃m(L)s = 2

(
2L
λmax

− I
)
T̃m−1(L)s− T̃m−2(L)s.

Combined with (3), this finally leads to the following expression for filtering a signal
s:

s′ = g(L) =
1

2
c0Is+

∞∑
m=1

cmT̃m(L)s.

When implemented, we truncate this sum at a defined order M . Assuming that |E| >
N , the computational cost of this algorithm scales linearly with the number of edges
O(M |E|). In most applications, the Laplacian is sparse, |E| � N2, which results in
a fast algorithm. Moreover, apart from storing the Laplacian, the additional memory
consumed by this algorithm is only 4N .

3 Accelerated filtering using Lanczos
Given the graph Laplacian L ∈ RN×N and a nonzero vector s ∈ RN , the Lanc-
zos method [7] shown in Algorithm 1 below computes an orthonormal basis VM =
[v1, . . . , vM ] of the Krylov subspace KM (L, s) = span{s,Ls, . . . ,LM−1s}. The
computational cost of Algorithm is O(M · |E|). The storage of the basis VM requires
MN additional memory, which can be avoided using two passes of the algorithm or
restart techniques; see, e.g., [5] for more details.

The scalars produced by Algorithm 1 can be arranged into a symmetric tridiagonal
matrix HM ∈ RM×M satisfying

V ∗MLVM = HM =


α1 β2
β2 α2 β3

β3 α3
. . .

. . . . . . βM
βM αM

 .
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Algorithm 1 Lanczos method
Input: Symmetric matrix L ∈ RN×N , vector s 6= 0, M ∈ N.
Output: VM = [v1, . . . , vM ] with orthonormal columns, scalars α1, . . . , αM ∈ R and

β2, . . . , βM ∈ R.
1: v1 ← s/‖s‖2
2: for j = 1, 2, . . . ,M do
3: w = Lvj
4: αj = v∗jw
5: ṽj+1 = w − vjαj
6: if j > 1 then
7: ṽj+1 ← ṽj+1 − vj−1βj−1
8: end if
9: βj = ‖ṽj+1‖2

10: vj+1 = ṽj+1/βj
11: end for

In floating-point arithmetics, the orthogonality of the basis produced by Algorithm 1
may get quickly lost and reorthogonalization is needed [3].

Given a continuous function g : [0, λmax] → R and a vector s, the following
approximation to g(L)s was proposed by Gallopoulos and Saad in [6]:

g(L)s ≈ ‖s‖2VMg(HM )e1 := gM , (4)

where e1 ∈ RM is the first unit vector. Because of eigenvalue interlacing, the eigen-
values of HM are contained in the interval [0, λmax] and hence the expression g(HM )
is well-defined. Typically, M � N , rendering the evaluation of g(HM ) inexpensive.
The overall cost of our Lanczos-based approximation of graph-signal filtering, which
consists of applying Algorithm 1 and evaluating (4), is therefore between O(M · |E|)
and O(M · |E|+M2N), depending on how the reorthogonalization is performed.

Approximation quality. The following theorem provides some insight into the ac-
curacy of the approximation gM obtained by the Lanczos method.

Theorem 1 ([9, Corollary 3.4]). Let L ∈ RN×N be symmetric with eigenvalues con-
tained in the interval [0, λmax] and let g : [0, λmax]→ R be continuous. Then

‖g(L)s− gM‖2 ≤ 2‖s‖2 · min
p∈PM−1

max
z∈[0,λmax]

|g(z)− p(z)|,

where PM−1 denotes all polynomials of degree at most M − 1.

Theorem 1 shows that the error is bounded by the best polynomial approxima-
tion [14] of g on [0, λmax]. Compared to the Chebyshev approximation from Sec-
tion 2.3, this shows that – up to a multiple of two – the Lanczos-based approximation
gM can be expected to provide at least the same accuracy.

However, the Lanczos-based approximation can sometimes be expected to perform
significantly better because of its ability to adapt to the eigenvalues of L. This phe-
nomenon is well-understood for Krylov subspace approximations to solutions of linear
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systems (see, e.g., [8, Section 3.1]) and extends to matrix functions as well. To illus-
trate such a situation, suppose that the eigenvalue 0 of L is well separated from the
other eigenvalues contained in the (smaller) interval [λ1, λmax]. Then the eigenvalues
of HM can be expected to exhibit a similar behavior [15, Chapter 6].

By choosing a polynomial that interpolates the eigenvalue 0 exactly and approxi-
mates g on [λ1, λmax], the bound of Theorem 1 can approximately be replaced by

‖g(L)s− gM‖2 . 2‖s‖2 · min
p∈PM−2

max
z∈[λ1,λmax]

|g(z)− p(z)|.

At the expense of losing a degree of freedom in the choice of the polynomial, the width
of the approximation interval becomes smaller, which in turn leads to significantly
improved approximation rates [14]. In contrast, the Chebyshev approximation cannot
adapt to the eigenvalues of L and hence its approximation rate is driven by the larger
interval [0, λmax].

Stopping criteria. Ideally, M should be chosen to be the smallest integer such that

‖eM‖2 = ‖g(L)s− gM‖2 ≤ ε

holds for some prescribed accuracy ε > 0. As proposed in [20], we estimate eM as the
difference of two (consecutive) approximations:

eM ≈ gM+j − gM (5)

for a small value of j.

4 Numerical experiments
In this section we present numerical experiments to demonstrate the numerical be-
haviour of the Lanczos method and compare it with the Chebyshev method. All ex-
periments were performed with the signal processing toolbox GSPBox [12] and can be
downloaded at https://lts2.epfl.ch/lanczos-filtering/.

Example 1. We first consider the sensor graph and the Erdős–Rényi random graph [4],
with N = 500 nodes. In the latter case, each edge is included in the graph with
probability p = 0.04. As a filterbank, we use a collection of translated windows
g(t) = sin(0.5π cos(πt)2)χ[−1/2,1/2], where χI is the characteristic function of I [21].
We choose to adapt the filterbank to the graph spectrum, since non-adapted filters lead
to very coherent frames for graphs with eigenvalues not uniformly spread along the
spectrum [18].

First, we test the reliability of the error estimate (5) for j = 3. Figure 2 confirms
that the estimate ‖gM+3 − gM‖2 closely follows the true error ‖eM‖2.

In Figures 3 and 5 we observe that the Lanczos method yields better approximation,
especially in the case when the spectrum of graph Laplacian is not uniformly distributed
and has a large (relative) spectral gap, as predicted in Section 3.

Example 2. The purpose of this example is to investigate how the approximation
by the Chebyshev polynomial method and the Lanczos method depends on the edge
sparsity of the Erdős – Rényi graph. We consider graphs with N = 1000 nodes.
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Figure 2: Sensor graph (left) and Erdős – Rényi graph (right). Comparison of the
approximation error in the Lanczos method and the estimate (5).
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Figure 3: Sensor graph (left) and Erdős – Rényi graph (right). Comparison of the
approximation error using the Chebyshev method and the Lanczos method with respect
to the order of approximation.

The order of Chebyshev polynomial and Lanczos method are set to M = 30. As a
filterbank, we the use mexican hat wavelet, with a mother window

gh(λ`) = λ` · exp(−λ2`),

with λ` eigenvalues of graph Laplacian. In order to obtain a complete filterbank, we
add a low pass filter gl(λ`) = exp(−λ4`).

We notice that the Lanczos method exhibits excellent numerical behaviour in com-
parison with the Chebyshev method, particularly when using non-adapted filters. As
the probability p increases, the (relative) spectral gap increases as well, leading to more
accurate Lanczos approximation (see Figure 6).

5 Conclusion
In this letter, a scalable, efficient and accurate method to perform signal filtering on
graphs based on the Lanczos method is proposed. We compare it to the existing method
based on the Chebyshev polynomial approximation. The advantage of filtering using
the Lanczos approximation is that no a priori information about the spectrum of L is
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Figure 4: Sensor graph (left) and Erdős – Rényi graph (right). Filterbanks adapted to
spectra of graph Laplacians.
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Figure 5: Sensor graph (left) and Erdős – Rényi graph (right). Distribution of graph
Laplacians’ eigenvalues.

needed. In all numerical experiments the proposed method outperforms the Chebyshev
approach. That is especially visible in case of a non-adapted filterbank. Futhermore,
the Lanczos approximation is superior to the Chebyshev approximation when filtering
on random graphs with well separated eigenvalues.
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