3,824 research outputs found

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Modeling, Design And Fabrication Of Orthogonal And Psuedo-orthogonal Frequency Coded Saw Wireless Spread Spectrum Rfid Sensor Tags

    Get PDF
    Surface acoustic wave (SAW) sensors offer a wireless, passive sensor solution for use in numerous environments where wired sensing can be expensive and infeasible. Single carrier frequency SAW sensor embodiments such as delay lines, and resonators have been used in single sensor environments where sensor identification is not a necessity. The orthogonal frequency coded (OFC) SAW sensor tag embodiment developed at UCF uses a spread spectrum approach that allows interrogation in a multi-sensor environment and provides simultaneous sensing and sensor identi- fication. The SAW device is encoded via proper design of multiple Bragg reflectors at differing frequencies. To enable accurate device design, a model to predict reflectivity over a wide range of electrode metallization ratios and metal thicknesses has been developed and implemented in a coupling of modes (COM) model. The high coupling coefficient, reflectivity and temperature coefficient of delay (TCD) of YZ LiNbO3 makes it an ideal substrate material for a temperature sensor, and the reflectivity model has been developed and verified for this substrate. A new concept of pseudo-orthogonal frequency coded (POFC) SAW sensor tags has been investigated, and with proper design, the POFC SAW reduces device insertion loss and fractional bandwidth compared to OFC. OFC and POFC sensor devices have been fabricated at 250 MHz and 915 MHz using fundamental operation, and 500 MHz and 1.6 GHz using second harmonic operation. Measured device results are shown and compared with the COM simulations using the iii enhanced reflectivity model. Additionally, the first OFC devices at 1.05 GHz were fabricated on 128o YX LiNbO3 to explore feasibility of the material for future use in OFC sensor applications. Devices at 915 MHz have been fabricated on YZ LiNbO3 and integrated with an antenna, and have then been used in a transceiver system built by Mnemonics, Inc. to wirelessly sense temperature. The first experimental wireless POFC SAW sensor device results and predictions will be presented

    Instantaneous Frequency Estimation and Signal Separation Using Fractional Continuous Wavelet Transform

    Get PDF
    In the signal processing field, time-frequency representations (TFR\u27s) have intensively been improved to provide effective and powerful tools for reliable signal analysis. One of the most valuable and frequently used tools is Fourier transform (FT) which has been used to study the frequency content of stationary signals in the Fourier domain (FD). However, FT is not sufficient to study the frequency of non-stationary signals. For this particular type of signals to be best analyzed, some transforms such as the short time Fourier transform (STFT) and the continuous wavelet transform (CWT) have been introduced to provide us with a signal representation in the time-frequency plane. Another transform based on STFT and CWT; namely, the synchrosqueezing transform (SST), was introduced to improve the sharpness of the TFR\u27s by assigning the coefficient value to a different point in the TF plane. Also, TFR\u27s with satisfactory energy concentration and the corresponding SST’s involving both time and frequency variables were introduced; namely, the instantaneous frequency-embedded STFT (CWT) (IFE-STFT/IFE-CWT), where a rough estimation of the IF of a targeted component was used to achieve an accurate IF estimation. Recently, the STFT, the CWT and the corresponding SST’s with a time-varying window width are proposed and studied. These transforms have shown the confidence in the accuracy of both sharpening the TFR and separating the components of a multicomponent non-stationary signal, which then led to obtain a more accurate component retrieval formula at any local time. In order to improve the time-frequency resolutions, the concept of fractional Fourier transform (FrFT) was introduced as a potent tool to analyze time-varying signals; however, it fails in locating the frequency content in the fractional Fourier domain (FrFD). To this regard, the short time fractional FT (STFrFT) and the fractional CWT (FrCWT) were proposed to solve this issue by displaying the time and FrFD-frequency contents jointly in the time-FrFD-frequency plane. In this dissertation, we provide a component retrieval formula for a multicomponent signal from its FrCWT with integral involving only the scale variable and then introducing the corresponding SST (FrWSST). We also introduce the first and second order SST based on the IFE-CWT (IFE-WSST) and then propose time-FrFD-frequency representations with satisfactory energy concentration; namely, IFE-FrCWT and the corresponding SST (IFE-FrWSST). Lastly, we consider the FrCWT with a time-varying window width; namely, the adaptive FrCWT (AFrCWT) and the corresponding SST (AFrWSST). We propose these TFR\u27s in the FrFD for the purpose of not only improving the accuracy of the IF estimation and the energy concentration of these transforms, but also enhancing the separation conditions for the components of a multicomponent signal to be retrieved more accurately

    Serial-data computation in VLSI

    Get PDF

    Dust and the Infrared Kinematic Properties of Early-Type Galaxies

    Full text link
    We have obtained spectra and measured the stellar kinematics in a sample of 25 nearby early-type galaxies (with velocity dispersions from less than 100 km/s to over 300 km/s) using the near-infrared CO absorption bandhead at 2.29 microns. Our median uncertainty for the dispersions is ~10%. We examine the effects of dust on existing optical kinematic measurements. We find that the near-infrared velocity dispersions are in general smaller than optical velocity dispersions, with differences as large as 30%. The median difference is 11% smaller, and the effect is of greater magnitude for higher dispersion galaxies. The lenticular galaxies (18 out of 25) appear to be causing the shift to lower dispersions while the classical ellipticals (7 out of 25) are consistent between the two wavelength regimes. If uniformly distributed dust causes these differences, we would expect to find a correlation between the relative amount of dust in a galaxy and the fractional change in dispersion, but we do not find such a correlation. We do see correlations both between velocity dispersion and CO bandhead equivalent width, and velocity dispersion and Mg2 index. The differences in dispersion are not well explained by current models of dust absorption. The lack of correlation between the relative amount of dust and shift in dispersion possibly suggets that dust does not have a similar distribution from galaxy to galaxy. The CO equivalent widths of these galaxies are quite high (>10 angstroms for almost all), requiring the light at these wavelengths to be dominated by very cool stars.Comment: 17 pages, 14 figures, accepted to The Astronomical Journa
    • …
    corecore