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Abstract

In the signal processing field, time-frequency representations (TFR’s) have inten-
sively been improved to provide effective and powerful tools for reliable signal
analysis. One of the most valuable and frequently used tools is Fourier transform
(FT) which has been used to study the frequency content of stationary signals in
the Fourier domain (FD). However, FT is not sufficient to study the frequency
of non-stationary signals. For this particular type of signals to be best analyzed,
some transforms such as the short time Fourier transform (STFT) and the contin-
uous wavelet transform (CWT) have been introduced to provide us with a signal
representation in the time-frequency plane. Another transform based on STFT
and CWT; namely, the synchrosqueezing transform (SST), was introduced to im-
prove the sharpness of the TFR’s by assigning the coefficient value to a different
point in the TF plane. Also, TFR’s with satisfactory energy concentration and the
corresponding SST’s involving both time and frequency variables were introduced;
namely, the instantaneous frequency-embedded STFT (CWT) (IFE-STFT/IFE-
CWT), where a rough estimation of the IF of a targeted component was used to
achieve an accurate IF estimation. Recently, the STFT, the CWT and the cor-
responding SST’s with a time-varying window width are proposed and studied.
These transforms have shown the confidence in the accuracy of both sharpening the
TFR and separating the components of a multicomponent non-stationary signal,
which then led to obtain a more accurate component retrieval formula at any local
time. In order to improve the time-frequency resolutions, the concept of fractional
Fourier transform (FrFT) was introduced as a potent tool to analyze time-varying
signals; however, it fails in locating the frequency content in the fractional Fourier
domain (FrFD). To this regard, the short time fractional FT (STFrFT) and the
fractional CWT (FrCWT) were proposed to solve this issue by displaying the
time and FrFD-frequency contents jointly in the time-FrFD-frequency plane. In
this dissertation, we provide a component retrieval formula for a multicomponent
signal from its FrCWT with integral involving only the scale variable and then
introducing the corresponding SST (FrWSST). We also introduce the first and
second order SST based on the IFE-CWT (IFE-WSST) and then propose time-
FrFD-frequency representations with satisfactory energy concentration; namely,
IFE-FrCWT and the corresponding SST (IFE-FrWSST). Lastly, we consider the
FrCWT with a time-varying window width; namely, the adaptive FrCWT (AFr-
CWT) and the corresponding SST (AFrWSST). We propose these TFR’s in the
FrFD for the purpose of not only improving the accuracy of the IF estimation and
the energy concentration of these transforms, but also enhancing the separation
conditions for the components of a multicomponent signal to be retrieved more
accurately.

Keywords: Fractional wavelet transform, Instantaneous frequency-embedded fractional wavelet

transform, Adaptive fractional wavelet transform, Synchrosqueezing transform
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Introduction
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Time-frequency analysis has been seen as a significant and powerful tool in the
field of signal processing and analysis. It is used to facilitate and understand the
oscillatory features of signals whose their frequencies may or may not change with
time.

By considering an integrable function x(t) on R as a function in PC(R), ap-
plying Fourier transform (FT) to x(t) aims to take it from the time domain R to
x̂(ξ) in the frequency domain R. FT is used to study the frequency contents of
time dependent signals, where the analog signal can be reconstructed back from
the frequency content by using the inverse Fourier transform.

The purpose of localizing signals x ∈ L2(R) before applying FT is apparent
through the aim of using a suitable real-valued time-window function u ∈ (L1 ∩
L2)(R) in the short-time Fourier transform (STFT). This window function allows
to move along the t-axis without partitioning it into disjoint intervals. Therefore
with this window function, the STFT takes x(t) from the time domain R to a
quantity Vx(t, ξ) in the time-frequency domain R2, where we can see that x can
easily be reconstructed back from its localized Fourier transform as it will be seen
later in Section 2.3.

For signals x ∈ L1(R) (or PC∗([a, b]), a, b ∈ R), the frequency contents are in-
vestigated in some desirable neighborhood of any t by adopting the Fourier basis
functions ei2πξt, ξ ∈ R. Instead of that, a general wavelet ψ ∈ L2(R) is used to
generate a whole family of wavelets through

ψ
a,b

(t) =
1

a
ψ
(t− b

a

)
,

where the factor a > 0 is for adjusting the scale and the length of the wavelet and
the parameter b ∈ R is for shifting the support interval of ψ

a,b
along the whole real

axis. Thus, for a function x ∈ L2(R), the continuous wavelet transform (CWT)
of x is defined as the inner product of x with the family wavelet {ψ

a,b
}. It aims

to analyze the time and frequency contents of x depending on the width of the
window function ψ

a,b
(t). If ψ ∈ L2(R) satisfies the admissibility condition; that is,∫ ∞

0

|ψ̂(ξ)|2

ξ
dξ <∞,

then the reconstruction operations for x from the CWT are allowed.

For a real value ξ
k
> 0 and ak ∈ R, a signal x(t) defined by

x(t) = a0 +
N∑
k=1

x
k
(t) = a0 +

N∑
k=1

ak cos(2πξ
k
t)
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is a superposition of the sub-signals x
k
(t) = ak cos(2πξ

k
t) for k = 1, 2, ..., N , where

ξ
k

are their constant frequencies. These frequencies are independent of the time
variable t, so x(t) is classified as a stationary signal. However, signals with time
dependent frequencies are classified to be non-stationary, and they are defined to
be superpositions of the sub-signals x

k
(t) = Ak(t) cos(2πφ

k
(t)) for k = 1, 2, ..., N ,

by

x(t) = A0(t) +
N∑
k=1

x
k
(t) = A0(t) +

N∑
k=1

Ak(t) cos(2πφ
k
(t)),

where Ak > 0, φ
k
∈ C2

(R) such that φ′
k
> 0 is the instantaneous frequency (IF)

of x
k
(t) for k = 1, 2, ..., N , and A0(t) is some polynomial. These types of signals

seek for best analysis into the time-frequency plane since FT is ineffective to study
their frequency contents. Therefore, a powerful time-frequency method based on
the CWT; namely, synchrosqueezing transform (SST), was recently developed.
The SST, also named the CWT-based synchrosqueezing transform (WSST) that
was introduced by Daubechies and Maes in [24] with a further development by
Daubechies, Lu and Wu in [23] (also see [25]) and comprehensively studied by
Wu in his Ph.D. dissertation [64] considering both the CWT and the STFT to
compute some reference frequency from the source signal for the SST operation to
squeeze out the IF’s of the components of multicomponent signal, is a special type
of the reassignment method which is considered as a post processing technique
to sharpen the TF representation of a signal by allocating the coefficient value to
a different point in the TF plane, and with a further study by Thakur and Wu
in [60]. Chapter 3 is prepared to present the SST in slightly more details. This
idea was also modified with the STFT; namely, STFT-based synchrosqueezing
transform (FSST) which was proposed by Oberlin, Meignen and Perrier in [49]
using a different well-separated condition. Later on, They proposed and studied
the second-order SST based on both STFT and CWT in [5], [47] and [50] (also
see [3]).

Li and Liang in [40] introduced the generalized SST that aims to transform a
signal x(t) = A(t) cos(2π φ(t)) or x(t) = A(t) ei2πφ(t) to a signal with a constant
frequency by

x(t) −→ x(t) e−i2π(ϕ(t)+ξ0t),

where ξ0 is the target frequency. However, this method has limitations that in
practice estimating φ′(t) is needed since it is unknown, and only one variable is in-
volved as conventional SST [40]. Later on, a transform that involves both variables
of STFT was introduced by Wang, Chen, etc., in [62]; namely, the demodulation-
transform based SST, and the idea was motivated to be with CWT by Jiang and
Suter in [30].

A time-varying window width was recently adapted to the SST based on STFT

9



and discussed in [55], and later on in [35] the authors proposed and studied the
adaptive CWT and the corresponding SST for IF estimation and multicomponent
signal separation (also see [7, 13, 14, 34, 37, 43, 44]).

As known, Fourier analysis is one of the most powerful and frequently used
tools in the field of signal processing, and to visualize the FT operator; a change
in representation of the signal corresponding to a counter-clockwise rotation of the
axis by an angle π

2
is required. The fractional Fourier transform (FrFT), which

provides a generalization of the conventional FT, was introduced in mathematics
literature by V. Namias in 1980 [46] where it can be considered as a rotation by
an angle α in the time-frequency plane (also see [52, 54, 58, 67]). The FrFT is
an effective tool to analyze the chirp signal. In some applications; however, it
fails in locating the fractional Fourier domain (FrFD)-frequency contents. Many
authors have proposed some works to adapt the FrFT to the STFT; namely, short
time fractional Fourier transform (STFrFT), to solve this issue and improve the
performance in concentration of the traditional time-frequency representations
(TFR’s) [1, 9]. The STFrFT is to display the time and FrFD-frequency informa-
tion jointly in the time-FrFD-frequency plane and provide the signal with a 2-D
support; namely, the short-time fractional Fourier domain (STFrFD)-support [59].

In 1997, Mendlovic, Zalevsky, etc., introduced the fractional continuous wavelet
transform (FrCWT), which takes advantage of the localization existing in the FrFT
to improve the reconstruction performance of the CWT [45]. Recently, the FrCWT
has been developed to be more general and has elegant mathematical properties
by Dai, Zheng, etc. It is to display the time and FrFD-frequency information
jointly in the time-FrFD-frequency plane [22] (also see [56]).

This dissertation is organized as follows: Preliminaries in Chapter 2, where the
fundamental concepts of the TFR’s for analyzing stationary and non-stationary
signals are provided. In Chapter 3, the concept of the SST is introduced to show
the improvement in the sharpness of TFR’s. In Chapter 4, we review the FrFT
and the FrCWT, and we then establish a retrieved formula for a signal from the
FrCWT with integral involving only one variable and define a new SST based
on the FrCWT. In Chapter 5, we introduce the IFE-SST and the second-order
IFE-SST based on CWT where the derivation of the phase transformation comes
directly from the transform not like that was based on reassignment operators
[50], [47]. Then we propose the IFE fractional continuous wavelet transform (IFE-
FrCWT) and the corresponding SST (IFE-FrWSST). In Chapter 6, we briefly
review the CWT with a time-varying parameter (ACWT) and the corresponding
SST (AWSST) [35], and we then propose the FrCWT with a time-varying pa-
rameter (AFrCWT) and the corresponding SST (AFrWSST). Finally, we end this
dissertation with a conclusion and future work in Chapter 7.

10



CHAPTER 2

Preliminaries
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2.1 Fourier transform

Fourier transform (FT) is a mathematical transform which decomposes a function
of time, x(t), into its constituent frequency. It may be used to study the frequency
content of stationary functions, where this type of functions can be considered as
functions in the set of piecewise continuous functions on R, PC(R). Thus applying
FT to such functions with time-domain R reveals its entire frequency content. In
this brief section, FT concept and some useful properties will be introduced.

Definition 2.1.1. Let x(t) be a function in the space of all integrable functions
on R, denoted L1(R). Then the FT of x(t), x̂(ξ), is defined by

x̂(ξ) =

∫ ∞
−∞

x(t) e−i2πξt dt, ξ ∈ R.1 (2.1.1)

Notice that since e−i2πξt = cos(2πξt) − i sin(2πξt), the FT of x(t) reveals its
frequency content in terms of the oscillation of cosine and sine functions as follows

x̂(ξ) =

∫ ∞
−∞

x(t) cos(2πξt)dt− i
∫ ∞
−∞

x(t) sin(2πξt) dt,

where ξ −Hz (i.e., ξ radian per second) is the frequency variable.

Furthermore, for x(t) ∈ L2(R) such that its FT x̂(ξ) ∈ L1(R), x(t) can be
retrieved back from its frequency content (or FT) by the inverse Fourier transform
(IFT), which is defined by: (see [[12], section 7.2, pp. 329− 332 and Theorem 4,
p 332]).

x(t) =

∫ ∞
−∞

x̂(ξ) ei2πtξ dξ.

The Parseval identity of FT, which can be used to write some transformations in
the frequency-domain (FD), is defined by∫ ∞

−∞
x(t) y(t) dt =

∫ ∞
−∞

x̂(ξ) ŷ(ξ) dξ, (2.1.2)

for x, y ∈ L2(R).

Remark: For x(t) ∈ L2(R), the FT of x′(t) is given to be

x̂′(ξ) = i ξ x̂(ξ), (2.1.3)

while the FT of a function y(t) = t x(t) is defined by

ŷ(ξ) = i
d

dξ
x̂(ξ). (2.1.4)

1For given ξ, x̂(ξ) represents the part of x that oscillates at frequency ξ on the whole time-
domain.

12



Now, from equations (2.1.3) and (2.1.4), one can obtain the FT of a function
z(t) = t x′(t) as follows

ẑ(ξ) = i
d

dξ
x̂′(ξ) = i

d

dξ
(i ξ x̂(ξ)) = −x̂(ξ)− ξ x̂′(ξ). (2.1.5)

2.2 Stationary and non-stationary signals

As known by considering the Fourier series of an even function extensions, ev-
ery finite-energy signal x(t) on [0, L

2
] has a Fourier cosine series representation,

denoted S
c

x, defined as

x(t) = (S
c

x)(t) =
a0

2
+
∞∑
k=1

a
k

cos
(2πkt

L

)
,

which converges to x in L2([0, L
2
]), where cosine coefficients are given by

a
k

=
4

L

∫ L
2

0

x(t) cos
(2πkt

L

)
dt, k = 0, 1, 2, ....

Thus, the L-periodic signal x has an instantaneous frequency ξ
k

= k
L
−Hz for all

k ∈ Z+
where ak 6= 0. Notice that the unit Hertz (Hz) used to measure the number

of cycles of oscillation per second when t represents the time variable. Under the
following subsections, we will focus on presenting signals with frequencies that
may or may not change with time.

2.2.1 Stationary signals

Signals with frequencies that do not change with time are called stationary signals,
which are best analyzed by using FS methods or FT. To study the frequency
content of a stationary signal x(t), we first consider the standard signal model
given by

x(t) = a0 +
N∑
k=1

ak cos(2πξ
k
t), (2.2.1.1)

for arbitrary frequency values ξ
k
> 0 and ak ∈ R for k = 1, 2, ..., N . Notice that

this signal defined above in (2.2.1.1), which is a finite-energy signal with time-
domain R, has frequencies ξ

k
for k = 1, 2, ..., N , that are independent of the time

variable t ∈ R. Thus by applying FT to (2.2.1.1), we have

x̂(ξ) = a0 δ(ξ) +
1

2

N∑
k=1

ak
(
δ(ξ − ξ

k
) + δ(ξ + ξ

k
)
)
, (2.2.1.2)

13



where the frequencies can easily be determined. This stationary signal defined in
(2.2.1.1) is a special case of the general stationary signal model

x(t) = a0 +
N∑
k=1

ak cos 2π(ξ
k
t+ ek), (2.2.1.3)

with ek = 0. In this general model, sine functions and negative amplitudes for
stationary signals are allowed to be used, and of course every x defined in (2.2.1.3)
and the corresponding x defined in (2.2.1.1) have the same frequency since the FT
of the general model x is given by

x̂(ξ) = a0 δ(ξ) +
1

2

N∑
k=1

ak e
i2πξek
ξ
k

(
δ(ξ − ξ

k
) + δ(ξ + ξ

k
)
)
.

From this overview, we see that the FT is useful to discover the frequency contents
of stationary signals whose frequencies do not change with time. However, when
specific frequency values are assumed, the Fourier transform does not display the
time instants. Because of this, it becomes hard to analyze their frequency contents.

2.2.2 Non-stationary signals

In this subsection, we will focus on signals that their frequencies change with time.
These types of signals are called non-stationary signals, and they can be defined
as follows

x(t) = T (t) +
N∑
k=1

Ak(t) cos(2πφk(t)), (2.2.2.1)

where Ak(t) > 0, φk(t) ∈ C
2
(R) such that φ′k(t) > 0, and T (t) is some polynomial

that may possibly be embedded with noise. In other words, x(t) is a superposition
of signal components; that is,

xk(t) = Ak(t) cos(2πφk(t)), k = 1, 2, ..., N. (2.2.2.2)

In this regard, the question is to know when is x said to be a superposition? To
answer this question, we will first have the following definition

Definition 2.2.1. Let x : R→ C be a continuous function, and x ∈ L∞(R). Then
x is said to be intrinsic mode type (IMT) with accuracy ε > 0 if x(t) = A(t) ei2πφ(t)

with some properties that A(t) and φ(t) satisfy:

• A(t) ∈ (C
1 ∩ L∞)(R), φ(t) ∈ C2

(R);

• inf
t
φ′(t) > 0, sup

t
φ′(t) <∞, t ∈ R;

• |A′(t)| ≤ ε|φ′(t)|, |φ′′(t)| ≤ ε|φ′(t)| ∀ t ∈ R.

14



After that, one can define a superposition function as follows:

Definition 2.2.2. A function x : R → C is said to be a superposition of well-
separated intrinsic mode components with separation 0 < d < 1 and up to accu-
racy ε > 0, if there exists a finite N, such that

x(t) =
N∑
k=1

xk(t) =
N∑
k=1

Ak(t) e
i2πφk(t), (2.2.2.3)

where all x
k
(t) are IMT functions, and their phase functions φk(t) satisfy, for some

0 < d < 1, that

φ′k(t) > φ′k−1 and |φ′k(t)− φ′k−1| ≥ d(φ′k(t) + φ′k−1) ∀ t ∈ R. (2.2.2.4)

From equation (2.2.2.2), the functions Ak(t) and φk(t) are called amplitude and
phase functions that generalizing the constants ak and the linear functions ξ

k
t in

(2.2.1.1) respectively. The derivative function of φk(t), φ
′
k(t), for k = 1, 2, ..., N ,

is the extension of the frequency ξ
k

in (2.2.1.1), where each φ′k(t) is called the in-
stantaneous frequency of xk(t). The trend T (t) is a generalization of the constant
factor a0 in the stationary signal model (2.2.1.1). Notice that x(t), defined in
(2.2.2.1), is said to be non− linear if the amplitude functions Ak(t) are allowed to
be non-constants and non− stationary if the phase functions φk(t) are non-linear
functions. Thus, such signal model is called the adaptive harmonic model (AHM).

For a signal x(t) defined in (2.2.2.1), if x(t) is a blind source signal, it is definitely
not feasible to determine its specific signal components xk(t) for k = 1, 2, ..., N , by
any decomposition scheme, without knowing prior knowledge of these components
and/or specifying appropriate restrictions on the AHM. Those restrictions, in the
signal processing literature, are described as follows:

Ak ∈ (C
1 ∩ L∞)(R), φk ∈ C

2
(R);

inf
t
Ak(t) > c1 , sup

t
Ak(t) < c2 ;

inf
t
φ′k(t) > c1 , sup

t
φ′k(t) < c2 ;

|A′k(t)| ≤ ε φ′k(t), |φ′′k(t)| ≤ ε φ′k(t),

(2.2.2.5)

for all t ∈ R, where 0 < ε << 1 and ε << c1 < c2 < ∞. In this model, we
also assume that all components are well-separated, which means their respective
phase functions φk(t) satisfy (2.2.2.4). In this subsection and later sections, we
will denote the class of functions x(t) satisfying the AHM conditions (2.2.2.4) and
(2.2.2.5) by A

c1 ,c2
ε,d .
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Notice that the representation of a signal component xk(t) defined in (2.2.2.2)
is not unique in general. That means there exist smooth functions α(t) and β(t)
such that cos(t) = (1 +α(t)) cos(t+β(t)). Thus, in the case of defining the signal
x(t), we have

x(t) = A(t) cos(2πφ(t)) = (A(t) + α(t)) cos(2π(φ(t) + β(t))).

If this x(t) satisfies the conditions in (2.2.2.5), then one can show for some constant
C depending only on c1 and c2 that |α(t)| ≤ C ε and |β′(t)| ≤ C ε [23]. In other
words, when ε is small enough, we see that the definition of the instantaneous
frequency (IF) and the instantaneous amplitude (IA) are unique up to a negligible
error because of their rigorous definitions [16].

2.3 Short-time Fourier transform

Let x(t) be a signal that truncated by some characteristic function χ
(a,b)

(t), then

computing ̂(xχ
(a,b)

)(ξ) is more simple than computing x̂(ξ) which needs all x(t)-
values on the entire real axis. Instead of using a characteristic function χ

(a,b)
(t),

we can consider a real-valued time-window function u(t) that is allowed to move
(continuously) along the t-axis without having any partitions of the t-axis into
disjoint intervals. This is the main idea of the so-called short-time Fourier trans-
form (STFT), where this window function u(t) in this transform is used to localize
the signal x(t) before applying FT to it. Because of this it will also be called the
localized Fourier transform (LFT).

Definition 2.3.1. Let u ∈ (L1 ∩ L2)(R) and t ∈ R. Then for any x ∈ L2(R), the
short-time Fourier transform (STFT) of x, denoted Vx(t, η), at the time-frequency
(or space-frequency) point (t, η) ∈ R2 is defined by

Vx(t, η) =

∫ ∞
−∞

x(τ)u(τ − t) e−i2πη(τ−t) dτ. (2.3.1)

As known, the FT takes a function x(t) from the time domain R to x̂(ξ) in the
frequency domain R, but the STFT, with the window function u, will take x(t)
from the time domain R to the time-frequency domain R2. With u ∈ (L1 ∩L2)(R)
and û ∈ (L1 ∩ L2)(R) such that u(0) 6= 0, x(t) can be retrieved back from the
STFT, Vx(t, η), called the inverse short-time Fourier transform, which is defined
by

x(t) =
1

||u(0)||2
2

∫
R

∫
R
Vx(t, η)u(τ − t) e−i2πη(τ−t)dτdη, (2.3.2)

where x ∈ (L1 ∩ L2)(R) with x̂ ∈ L1(R).
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By using Parseval identity of FT, the STFT can be written as follows

Vx(t, η) =

∫ ∞
−∞

x̂(ξ) û(η − ξ) ei2πtξ dξ, (2.3.3)

and then one may verify that x(t) can be retrieved back from the STFT with
integral involving only the frequency variable η as follows

x(t) =
1

u(0)

∫ ∞
−∞

Vx(t, η) dη. (2.3.4)

Note that for a real-valued signal x(t) and a real window function u(t) where
x̂(−η) = x̂(η) and û(−η) = û(η), equation (2.3.4) becomes

x(t) =
2

u(0)
Re

{∫ ∞
0

Vx(t, η) dη

}
. (2.3.5)

2.4 Continuous wavelet transform

In the previous section, a suitable window function is used to introduce the localized
Fourier transform (LFT), where the Fourier basis functions ei2πξt, ξ ∈ R are
adopted to investigate the frequency contents of functions x(t), for x ∈ L1(R) (or
x ∈ PC∗([a, b])), in some desirable neighborhood of any t. Instead of adapting
Fourier basis functions, we will consider a general function ψ ∈ L2(R) with

P.V.

∫ ∞
−∞

ψ(t) dt = lim
A→∞

∫ A

−A
ψ(t) dt = 0, (2.4.1)

and
ψ(t)→ 0 as t→ ±∞, (2.4.2)

where P.V. denotes the Cauchy principal value. Then ψ is called a wavelet.
For any wavelet ψ, one can generate a whole family of wavelets, small waves,
through

ψ
a,b

(t) =
1

a
ψ
(t− b

a

)
, (2.4.3)

where a > 0 and b ∈ R. Notice that using the factor a is to adjust the scale and
length of the wavelet, and the translation operator with the parameter b ∈ R,
ψ(t− b), is used to allow shifting the support interval of ψ

a,b
along the entire real

axis (i.e., by changing the values of b). Also, the normalization by 1
a

multiplica-
tion used in (2.3.4) is to present L1 − norm on R such that ‖ψa,b‖1 = ‖ψ‖1 for all
a > 0 and b ∈ R. The two-parameter family, {ψ

a,b
}, of functions ψ

a,b
(t) is called

the family of wavelets that generated by a signal wavelet function ψ ∈ L2(R) and
used as the integration kernel. From (2.4.1), we see that the graph of ψ oscillates

17



(i.e., ψ has a wavy shape); and (2.4.2) tells that this wave dies down as t→ ±∞.

The graphs of ψ
a,b

(t) may be small or large waves, and that depends on how
small or large the values of the factor a > 0 are. In particular, when a tends to 0,
we observe that ψ

a,b
(t) zooms in to a smaller region near t = b, which is the time

location.

Definition 2.4.1. For a function x(t) ∈ L2(R), the continuous wavelet transform
(CWT), denoted W

ψ

x (a, b), of x(t) at the time-scale point (a, b) is defined as the
inner product of x(t) with the family of wavelets ψ

a,b
by

W
ψ

x (a, b) = 〈x(t), ψ
a,b

(t)〉 =
1

a

∫ ∞
−∞

x(t)ψ
(t− b

a

)
dt. (2.4.4)

Notice that the CWT is a time-frequency method that can be used to analyze
the time and frequency contents of a function x(t) ∈ L2(R), or it is for analyzing
the oscillation behavior of x(t). To be more precise on the specifications of a
window function, we indeed want the two terminologies of width and center of
the window function. Let u(t) and û(ξ) have a nice localization, having small
window widths. Then, one can define the time window and the frequency window
respectively as

[t∗ −∆u, t
∗ + ∆u] and [ξ

∗ −∆û, ξ
∗

+ ∆û],

where t∗ and ξ
∗

are called, as they will be defined in the next definition, the centers
of u(t) and û(ξ) respectively.

Definition 2.4.2. (Time-frequency window width)
Assume that u ∈ (L1 ∩L2)(R) be a non-trivial window function such that t u(t) ∈
L2(R). Then the center of the localization window function u(t) is defined by

t∗ =

∫
R t |u(t)|2 dt∫
R |u(t)|2 dt

, (2.4.5)

and the radius of the window function u(t) is defined by

∆u =

(∫
R(t− t∗)2 |u(t)|2 dt∫

R |u(t)|2 dt

) 1
2

. (2.4.6)

Thus, the window width of u(t) is defined to be 2∆u. A similar definition is for
both the center ξ

∗
and the radius ∆û of û(ξ). One can easily use Hölder inequality

to show that if t u(t) ∈ L2(R) for u(t) ∈ L2(R), then t u2(t) ∈ L1(R). That is,∫ ∞
−∞
|t u2(t)| dx ≤ ‖tu‖2‖u‖2 .
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Therefore, the center t∗ is well-defined. Now, if ξ û(ξ) ∈ L2(R), then the time-
frequency localization window is defined by

[t∗ −∆u, t
∗ + ∆u]× [ξ

∗ −∆û, ξ
∗

+ ∆û].

In this regard, the wavelet ψ
a,b

(t), defined in (2.4.3), is called a window function
that used to localize a function x(t) in order to test its time and frequency contents.
This localization depends on the width of the window function which can then
be calculated after computing the center and radius of ψ

a,b
(x) using (2.4.5) and

(2.4.6), as follows:
t∗ψ
a,b

= a t∗ψ + b (2.4.7)

while
∆ψb,a = a∆ψ. (2.4.8)

Thus, the width of the window function ψ
a,b

(t) is 2a∆ψ, and the time-frequency
window of ψ

a,b
is given by

[
b+ at∗ − a∆ψ, b+ at∗ + a∆ψ

]
×
[ξ∗
a
− 1

a
∆ψ̂,

ξ
∗

a
+

1

a
∆ψ̂

]
.

The formula in (2.1.1) is the FT of a function x(t) ∈ L1(R), so we can consider

ξ
∗

ψ̂
a,b

and ∆ψ̂b,a
to describe the center and radius of the window function ψ̂

a,b
in

the frequency domain. Thus, we first see that the FT of ψ
a,b

(t) is ψ̂
a,b

(ξ) =

e−i2πξb ψ̂(aξ), and then from equations (2.4.3), (2.4.5) and (2.4.6), we have

ξ
∗

ψ̂
a,b

=
1

a
ξ
∗

ψ̂
, (2.4.9)

and

∆ψ̂
a,b

=
1

a
∆ψ̂. (2.4.10)

From equations (2.4.9) and (2.4.10), we notice that the localization window ψ
a,b

in the CWT has a nice feature which is the window width is not fixed, varying
with the scaling variable a. Hence, the CWT of x(t) zooms in, as the time-
window width, ∆ψ

a,b
= a∆ψ, narrows when the value of a is smaller, that means

providing a higher resolution in the time domain where the frequency-window
width, ∆ψ̂

a,b
= 1

a
∆ψ̂, widens. However, when the value of a is larger, the CWT

zooms out as the time-window width, ∆ψ
a,b

= a∆ψ, widens, while the frequency-

window width, ∆ψ̂
a,b

= 1
a

∆ψ̂, narrows, which means facilitating the analysis of

high-frequency contents.

Since the window function ψ
a,b

(t) slides along the real axis as the value of b ∈ R
changes, this window function facilitates the analysis of x(t) for different time and
frequency detail over the time axis.
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Definition 2.4.3. Let ψ ∈ L2(R) be a wavelet. If the FT of ψ, ψ̂, satisfies

c
ψ

=

∫ ∞
0

|ψ̂(ξ)|2

ξ
dξ <∞, (2.4.11)

then ψ is called an admissible wavelet.

Thus it is clear that the signal x(t) can be retrieved back from the CWT by
the inverse wavelet transform, if c

ψ
6= 0, as ( see [[12], Theorem 3, p 389]).

x(t) = c−1
ψ

∫ ∞
0

∫ ∞
−∞

W
ψ

x (a, b)ψ
a,b

(t) db
da

a
, (2.4.12)

for any admissible wavelet ψ ∈ L2(R) that satisfies (2.4.11), and for all x ∈
(L1 ∩ L∞)(R), where L∞(R) denotes the space of all bounded functions.

Note that the Parseval identity of FT can also be used to rewrite the CWT as
follows:

W
ψ

x (a, b) =

∫ ∞
−∞

x̂(ξ) ψ̂(aξ) ei2πbξ dξ. (2.4.13)

A function x(t) is said to be analytic if x(t) satisfies that x̂(ξ) = 0 for ξ < 0. Then
by considering analytic continuous wavelets, we assume that ψ satisfies

0 6= c
ψ

=

∫ ∞
0

ψ̂(ξ)
dξ

ξ
<∞. (2.4.14)

Therefore, x(t) ∈ L2(R) can be retrieved back from the CWT as

x(b) = c−1
ψ

∫ ∞
0

W
ψ

x (a, b)
da

a
(2.4.15)

in the case that x(t) is an analytic signal and c
ψ

is as defined in (2.4.14). Further-
more, for a real-valued signal x(t) ∈ L2(R), equation (2.4.15) becomes

x(b) = Re

(
2 c−1

ψ

∫ ∞
0

W
ψ

x (a, b)
da

a

)
. (2.4.16)

2.5 Instantaneous frequency-embedded CWT

A time-frequency representation with satisfactory energy concentration was first
introduced by Wang, Chen, etc., in [62] with STFT involving both time and
frequency variables, and then motivated by Jiang and Suter in [30] with CWT.
Our focus in more details here will be on the motivated one with CWT, namely;
the instantaneous frequency-embedded CWT (IFE-CWT), where a differentiable
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function, ϕ(t), is used with ϕ′(t) > 0. Now by assuming that x(t) ∈ L2(R), we
consider the generalized signal form given by

x
ϕ,b,ξ0

(t) = x(t) e−i2π(ϕ(t)−ϕ(b)−ϕ′(b)(t−b)−ξ0t), (2.5.1)

where ξ0 > 0, and we come up with the following definition.

Definition 2.5.1. Suppose ϕ(t) is a differentiable function with ϕ′(t) > 0. The
IFE-CWT, denoted W

E,ψ

x (a, b), of x(t) ∈ L2(R) with ϕ(t) and a continuous wavelet
ψ is defined by

W
E,ψ

x (a, b) =< x
ϕ,b,ξ0

(t), ψ
a,b

(t) >=

∫ ∞
−∞

x
ϕ,b,ξ0

(t) ψa,b(t) dt. (2.5.2)

In fact, the above definition of the IFE-CWT can be extended to slowly growing
functions. Now by using Parseval identity of FT, the IFE-CWT will be written
as follows

W
E,ψ

x (a, b) = ei2πϕ(b)

∫ ∞
−∞

̂̃x(ξ) ψ̂(aξ + aϕ′(b)) ei2πξb dξ, (2.5.3)

where
x̃(t) = x(t) e−i2π(ϕ(t)−ξ0t).

Consequently, a function x(t) ∈ L2(R) can be retrieved back from the IFE-CWT
as

x(b) = c−1
ψ
e−i2πξ0b

∫ ∞
−∞

W
E,ψ

x (a, b)
da

|a|
. (2.5.4)

However, if the scale variable a is restricted to a > 0, x(t) can be retrieved back
from the IFE-CWT as follows

x(b) = c−1
ψ
e−i2πξ0b

∫ ∞
0

W
E,ψ

x (a, b)
da

a
, (2.5.5)

where c
ψ

is defined by (2.4.14).
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CHAPTER 3

Synchrosqueezing Transform
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At the beginning of this chapter, we will briefly present an overview of time-
frequency analysis method; namely, the reassignment (RAM). Before that, we
know that the FT of a signal x(t) in the time domain, x̂(ξ), provides us with
a frequency domain representation. Thus the FT is not sufficient to study the
frequency content of non-stationary signals defined in (2.2.2.1) because their IF’s
φ′k(t) for k = 1, 2, ..., N , change with time. To best analyze these types of signals,
we need methods that provide us with a signal representation in the time-frequency
plane.

In the late 1970’s, Kodera, Gendrin and De Villedary introduced the reas-
signment method [32, 33]. Then it was generalized by Auger and Flandrin [2].
The RAM is a general way to sharpen the time-frequency representation (TFR)
towards its ideal time-frequency representation (ITFR). That is by creating a mod-
ified version of a time-frequency representation; for instance, STFT and CWT, by
moving its time-frequency values away from where they are computed. This is
in order to produce a better localization of the signal components. substantially,
the time-frequency values (t, ξ) are reassigned to the center of gravity or the local
centroid (t̃, ξ̃) of the energy contributions of the TFR [10, 12]. This improves clas-
sic time-frequency representations by providing an obvious graphical display of
the oscillatory features of a signal, facilitating signals interpretation. This method
is very effective, but it is not straightforward to reconstruct the signal components.

Recently, time-frequency analysis methods have seen significant developments
including the Fourier-based synchrosqueezing transform (FSST) and the wavelet-
based synchrosqueezing transform (WSST), where the synchrosqueezing transform
(SST); the first signal resolution approach for non-stationary signals, was origi-
nally introduced by Daubechies and Maes in [24] as a special type of reassignment
methods and comprehensively studied by Wu in his Ph.D. dissertation [64] con-
sidering both the CWT and the STFT with a further and full development of SST
based on STFT by Thakur and Wu in [60]. Later on, many other studies related
to the SST have been done to improve the sharpness of TFR’s by assigning the
coefficient value to different point in the TF plane, such as in [5], [47], [49], [50].

3.1 CWT-based synchrosqueezing transform

In Section 2.4, the CWT of a signal x(t), W
ψ

x (b, a), was introduced and defined
as the inner product of x(t) with the mother wavelet ψ

a,b
(t) in (2.4.3), which we

again display its formula here

W
ψ

x (a, b) = 〈x(t), ψ
a,b

(t)〉 =
1

a

∫ ∞
−∞

x(t)ψ
(t− b

a

)
dt. (3.1.1)
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The representation of the positive quantity |W ψ

x (a, b)|2 in the TF plane is called
the scalogram of x(t). By using equations (2.2.2.3) and (3.2.2), the corresponding
approximation for the CWT of x(t) is defined as follows:

W
ψ

x (a, b) ≈ W
ψ

x̃t(a, b) =
N∑
k=1

xk(t) ψ̂(aφ′k(t)). (3.1.2)

Notice that the representation of x in the TF plane is concentrated around ridges
corresponding to their instantaneous frequencies defined by a = ξ

ψ
/φ′k(t), where

ξ
ψ

= arg max
ξ
|ψ̂(ξ)| is the center frequency of the wavelet. Also, if φ′k(t), for

k ∈ {1, 2, ..., N}, are separated enough compared to the support of ψ̂, we see
each mode occupies a distinct domain of the TF plane, allowing their detection,
separation and reconstruction. This requires the frequency separation condition
described as:

• When supp ψ̂ ⊂ [1 − ∆, 1 + ∆], a multicomponent signal x is separated if
the instantaneous frequencies satisfy, for each k ∈ {1, 2, ..., N}, that

φ′k+1(t)− φ′k(t)
φ′k+1(t) + φ′k(t)

> ∆, t ∈ R.

Remark: The scalogram of a multicomponent signal x(t) defined in (2.2.2.3) is
given to be of the form

|W ψ

x (a, b)|2 =
N∑
k=1

|W ψ

xk
(a, b)|2

when the CWT’s of signal components, W
ψ

x
k
(a, b) for k = 1, 2, ..., N , do not

overlap in the TF plane. i.e., for all (a, b)

W
ψ

x
k
(a, b)W

∗ψ

x
l
(a, b) = 0, k 6= l.

However, in general, the scalogram of x(t) is given by

|W ψ

x (a, b)|2 =
N∑
k=1

|W ψ

x
k
(a, b)|2 +

N∑
k=1

N∑
l=1
l 6=k

W
ψ

x
k
(a, b)W

∗ψ

x
l
(a, b).

Observe that the second term on the right hand-side of this equation rep-
resents the cross-terms resulting from the interaction between two different
signal components. These terms are usually undesirable components be-
cause of non-linear structure of the scalogram. It is clear here to see that
the cross-terms appear only at the TF points where the auto-terms overlap;
however, they might appear even if the components do not overlap in any
other quadratic TF representations [57].
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3.1.1 First-Order WSST

It is an approach in the literature to the non-stationary signal analysis that intro-
duced by I. Daubechies and others in [23]. This approach is first to estimate the
IF’s of signal components before reconstructing the sub-signals, where the signal
satisfies the properties of the AHM in (2.2.2.4) and (2.2.2.5) (i.e., when the signal
x ∈ A

c1,c2

ε,d
). It is a special case of reallocation methods that aims to sharpen

TFR’s which means to reassign the scale variable a to the frequency variable. It
mainly works through squeezing the CWT defined in (2.4.4), where the analysis
wavelet ψ satisfies the admissibility condition in the sense that its FT vanishes
on the negative frequency axis, i.e., ψ̂(ξ) = 0 for ξ < 0. To extract the IF, we
consider the chirp signal x(t) = ei2πct as it was used in Section 3.2. Then the
CWT of x(t), W

ψ

x (a, b), is given by

W
ψ

x (a, b) = ei2πbc ψ̂(ac). (3.1.1.1)

By taking the first-order partial derivative of both sides of this above equation
(3.1.1.1) with respect to b, the exact IF , c, of x(t) can be obtained by

c =
∂
∂b
Wψ
x (a, b)

i2πWψ
x (a, b)

.

Based on this, it can be concluded that for a general signal x(t) ∈ L2(R), at (a, b)
on which W

ψ

x (a, b) 6= 0, the first-order phase transformation, which considered to
be the best candidate to estimate the IF, is defined by

Ω1st

x (a, b) =
∂
∂b
W

ψ

x (a, b)

i2πW ψ

x (a, b)
. (3.1.1.2)

The synchrosqueezing transform based on the CWT (WSST) is to reallocate the
values W

ψ

x (a, b) according to the map (a, b) −→ (Ω1st

x (a, b), b). In other words, it
is to reallocate the scale variable a by transforming the CWT of x, W

ψ

x (a, b), to a
quantity on the time-frequency plane:

S
CWT

x (ξ, b) =

∫
{a∈R+:W

ψ
x (a,b)6=0}

W
ψ

x (a, b) δ(Ω1st

x (a, b)− ξ) da
a
, (3.1.1.3)

where ξ is the frequency variable. Notice that for stability purpose, if x has been
contaminated by noise, the determination of those pairs (a, b) on which W

ψ

x (a, b) =
0 is rather unstable. Because of this we consider a threshold Γ for |W ψ

x (a, b)|, below
which Ω1st

x (a, b) is not defined, this is just by replacing {a : W
ψ

x (a, b) 6= 0} defined
in (3.1.1.3) by a smaller region {a : |W ψ

x (a, b)| ≥ Γ}. Then (3.1.1.3) becomes

S
CWT

x (ξ, b) =

∫
{a∈R+: |Wψ

x (a,b)| ≥Γ}

W
ψ

x (a, b) δ(Ω1st

x (a, b)− ξ) da
a
. (3.1.1.4)
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Thus, considering c
ψ
6= 0 to be the constant defined in (2.4.14), a mono-component

analytic signal x(t) ∈ L2(R), by (2.4.15), can be retrieved back from the WSST
as:

x(b) = c−1
ψ

∫ ∞
0

S
CWT

x (ξ, b) dξ. (3.1.1.5)

Notice that when x(t) is a real-valued signal, then, by (2.4.16),

x(b) = Re

(
2 c−1

ψ

∫ ∞
0

S
CWT

x (ξ, b)dξ

)
. (3.1.1.6)

However, for a multicomponent signal x(t) in (2.2.2.3), when Ak(t) and φk(t) sat-
isfy certain conditions as in definition 2.2.1, each component xk(t) can be retrieved
back from the WSST, i.e., for some Γ > 0

xk(t) ≈ Re

(
2 c−1

ψ

∫
|ξ−φ′k(b)|<Γ

S
CWT

x (ξ, b) dξ

)
. (3.1.1.7)

3.1.2 Second-Order WSST

The second-order SST means to adapt the SST to superpositions of perturbed
linear chirps. It aims to define a new approximation of the phase transforma-
tion that is associated with the second order partial derivatives of the CWT of
a given signal x(t) ∈ L2(R), which means obtaining an invertible sharpened TF
representation of the same quality as that obtained by the RAM. Similar to the
second-order FSST derivation, let x(t) be a linear chirp defined in (3.2.2.1), and
without using the reassignment operators, the second-order phase transformation,

denoted Ω
2nd

x (a, b), can be defined as:

Ω
2nd

x (a, b) =



Re

{
∂
∂b
W
ψ
x (a,b)

i2πW
ψ
x (a,b)

− a W
T ψ
x (a,b)

W
ψ
x (a,b)×J

W
(a,b)
× ∂

∂a

(
∂
∂b
W
ψ
x (a,b)

i2πW
ψ
x (a,b)

)}
;

when W
ψ

x (a, b) 6= 0 and J
W

(a, b) 6= 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Re

{
∂
∂b
W
ψ
x (a,b)

i2πW
ψ
x (a,b)

}
;

when W
ψ

x (b, a) 6= 0 and J
W

(a, b) = 0,

(3.1.2.1)

where T ψ := tψ(t) and J
W

(a, b) = ∂
∂a

(
∂
∂b
W
ψ
x (a,b)

i2πW
ψ
x (a,b)

)
. Now for a signal x(t) ∈ L2(R),

the second-order WSST of x(t) is defined by

S
CWT

x (ξ, b) =

∫
{a∈R+:W

ψ
x (a,b) 6=0}

W
ψ

x (a, b) δ(Ω
2nd

x (a, b)− ξ) da
a
.
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3.2 STFT-based synchrosqueezing transform

In Chapter 2, we briefly presented the Fourier transform of a signal x(t), x̂(ξ),
defined in (2.1.1). Then, in Section 2.3, the STFT of x(t) can locally be obtained
by sliding the window function u as defined in (2.3.1), which we again display its
formula here

Vx(t, η) =

∫ ∞
−∞

x(τ)u(τ − t) e−i2πη(τ−t) dτ. (3.2.1)

The representation of the positive quantity |Vx(t, η)|2 in the TF plane is called the
spectrogram of x. Note that if the window function u(t) is in the Schwartz class
- S, the set of all functions x ∈ C∞(R) with rapidly decreasing derivatives, then
the STFT, Vx(t, η), of a slowly growing function x(t) with u(t) is well defined. A
signal x(t) is said to be rapidly decreasing if for any integer N ≥ 0, there exists
a constant C

N
such that |t|N |x(t)| ≤ C

N
for all t ∈ R. It is clear that S is closed

under differentiation and multiplication by polynomials. Also, since x ∈ S are
bounded and decay faster than any polynomial as |t| → ∞, they are integrable,
which makes sense to take their Fourier transform. When x(t) has the form defined
in (2.2.2.3) with some assumed slow variations on Ak(t) and φ′k(t), x(t) can then
be written in the following approximated form

x(τ) ≈ x̃t(τ) =
N∑
k=1

Ak(t) e
i2π
(
φk(t)+φ′k(t)(τ−t)

)
, (3.2.2)

for τ close to a fixed time t. Therefore, the corresponding approximation for the
STFT of x(t) is defined as follows

Vx(t, η) ≈ Vx̃t(t, η) =
N∑
k=1

xk(t) û(η − φ′k(t)). (3.2.3)

Notice that the representation of x(t) in the TF plane is concentrated around
ridges corresponding to their instantaneous frequencies defined by η = φ′k(t). Also,
if φ′k(t) for k ∈ {1, 2, ..., N}, are separated enough compared to the support of û,
we see each mode occupies a distinct domain of the TF plane, allowing their
detection, separation and reconstruction. This requires the frequency separation
condition described as

• When supp û ⊂ [−∆,∆], a multicomponent signal x is separated if the
instantaneous frequencies satisfy, for each k ∈ {1, 2, ..., N}, that

φ′k+1(t)− φ′k(t) > 2∆, t ∈ R.

Remark: For a multicomponent signal x(t) defined in (2.2.2.3), the spectrogram
of x(t) is given to be in the form

|Vx(t, η)|2 =
N∑
k=1

|Vxk(t, η)|2 ,
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when the STFT’s of signal components, Vxk(t, η) for k = 1, 2, ..., N , do not
overlap in the TF plane. i.e., for all (t, η)

Vx
k
(t, η)V∗x

l
(t, η) = 0, k 6= l.

However, in general, the spectrogram of x(t) is given by

|Vx(t, η)|2 =
N∑
k=1

|Vxk(t, η)|2 +
N∑
k=1

N∑
l=1
l6=k

Vx
k
(t, η)V∗x

l
(t, η).

3.2.1 First-Order FSST

First, by considering the chirp signal x(t) = ei2πct with a constant instantaneous
frequency (IF), c > 0, the STFT of x(t), Vx(t, η), is given by

Vx(t, η) = ei2πct û(η − c). (3.2.1.1)

Now, by taking the first-order partial derivative of both sides of equation (3.2.1.1)
with respect to t, the exact IF, c, of x(t) can be obtained by

c =
∂
∂t
Vx(t, η)

i2πVx(t, η)
.

From that, we conclude that for a general signal x(t) ∈ L2(R), at (t, η) on which
Vx(t, η) 6= 0, the first-order phase transformation, which is the best candidate to
estimate the IF, is defined by

Ω1
st

x (t, η) =
∂
∂t
Vx(t, η)

i2πVx(t, η)
. (3.2.1.2)

The synchrosqueezing transform based on STFT (FSST) is to reassign the (com-

plex) coefficients Vx(t, η) according to the map (t, η) −→ (t,Ω1
st

x (t, η)), which
means reassigning the frequency variable η by transforming the STFT of x(t),
Vx(t, η), to a quantity on the time-frequency plane:

SSTFT
x (t, ξ) =

∫
{ζ:Vx(t,ζ)6=0}

Vx(t, ζ) δ(Ω1
st

x (t, ζ)− ξ) dζ, (3.2.1.3)

where ξ is the frequency variable. Thus, considering u(t) ∈ L2(R) with u(0) 6= 0,
a mono-component signal x(t) ∈ L2(R) can be retrieved back by

x(t) =
1

u(0)

∫ ∞
−∞

SSTFT
x (t, ξ) dξ. (3.2.1.4)
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Note that when x(t) and u(t) are real-valued functions, then

x(t) =
2

u(0)
Re

(∫ ∞
0

SSTFT
x (t, ξ)dξ

)
. (3.2.1.5)

However, for a multicomponent signal x(t) defined in (2.2.2.3), when Ak(t) and
φk(t) satisfy certain conditions as in definition 2.2.1, each component xk(t) can be
retrieved back from the FSST, i.e., for some Γ > 0

xk(t) ≈
1

u(0)

∫
|ξ−φ′k(t)|<Γ

SSTFT
x (t, ξ)dξ. (3.2.1.6)

In figure 3.1, a multicomponent test signal given by

x(t) = x1(t) + x2(t) = cos(2π(2t+ 0.2 cos(t))) + cos(2π(3t+ 0.02t2))

is used and sampled uniformly with 512 sample points, where 0 ≤ t ≤ 30. The
STFT of x(t) and the corresponding SST are implemented with the Gaussian

window function defined by g(t) = 1
σ
√

2π
e−

t2

2σ2 , or in the FD by ĝ(ξ) = e−2π2 σ2 ξ2
,

where the window width σ used with this example is selected to be 0.025.
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Figure 3.1: Top row: The signal x(t) and the ideal IFs of x1(t) (blue) and x2(t)
(red); Bottom row: The STFT and the corresponding SST (FSST).
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3.2.2 Second-Order FSST

The second-order SST was introduced in [49]. It aims on how to adapt SST to a
signal x(t) that is a linear frequency modulation (LFM) signal (i.e., linear chirp)
and defined by

x(t) = A(t) ei2πφ(t) = ept+
q
2
t2 ei2π(ct+ r

2
t2), (3.2.2.1)

with phase function φ(t) = c t + r
2
t2, the IF φ′(t) = c + rt, chirp rate φ′′(t) = r

and the IA A(t) = ept+
q
2
t2 , where p, q ∈ R and |p| and |q| are much smaller than

c, which is positive. Note that, in [50] the reassignment operators are used to get
the derivation of the second-order phase transformation of a signal x(t) ∈ L2(R),

denoted Ω2
nd

x (t, η), where a compact TF representation can be achieved. However,

it is possible to derive the second-order phase transformation, Ω2
nd

x (t, η), without
using the reassignment operators, which can be defined as

Ω2
nd

x (t, η) =



Re

{
∂
∂t

Vx(t,η)

i2πVx(t,η)
− J

F
(t, η)× VT ux (t,η)

i2πVx(t,η)

}
;

when ∂
∂η

(VT ux (t,η)
Vx(t,η)

)
6= 0 and Vx(t, η) 6= 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Re

{
∂
∂t

Vx(t,η)

i2πVx(t,η)

}
;

when ∂
∂η

(VT ux (t,η)
Vx(t,η)

)
= 0 and Vx(t, η) 6= 0,

(3.2.2.2)

where T u := tu(t) and

J
F

(t, η) =
1

∂
∂η

(VT ux (t,η)
Vx(t,η)

) × ∂

∂η

(
∂
∂t
Vx(t, η)

Vx(t, η)

)
.

Now for a signal x(t) ∈ L2(R), the second-order FSST of x(t) is defined by

SSTFT
x (t, ξ) =

∫
{ζ:Vx(t,ζ) 6=0}

Vx(t, ζ) δ(Ω2
nd

x (t, ζ)− ξ) dζ.
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CHAPTER 4

Fractional CWT-based Synchrosqueezing
transform
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4.1 Fractional Fourier transform

The fractional Fourier transform (FrFT) was reintroduced in the signal processing
by Almeida in 1994 as a generalization of the traditional Fourier transform, which
represents a given signal in the fractional Fourier domain (FrFD) [1].

Definition 4.1.1. For a signal x(t) ∈ L2(R), the α-order FrFT of x(t) is defined
by

Xα(ξ) =

∫ ∞
−∞

x(t)Kα(t, ξ) dt. (4.1.1)

Kα(t, ξ) is called the transform kernel which is given by

Kα(t, ξ) =


Bα e

iπ[t2+ξ2] cot(α)−itξ csc(α), α 6= jπ;

δ(t− ξ), α = 2jπ;

δ(t+ ξ), α = (2j + 1)π,

(4.1.2)

where Bα =
√

(1− i cot(α))/2π and j is an integer number. The α-order FrFT
can be considered as a rotation of signal in the TF plane for an angle α. Now,
by letting that x ∈ L2(R) such that its α-order FrFT Xα ∈ L1(R), x(t) can
be retrieved back from its α-order FrFT, Xα(ξ). For that, we indeed want to
introduce the inverse of the α-order FrFT which can be considered as a rotation
for an angle −α and defined by

x(t) =

∫ ∞
−∞

Xα(ξ)Kα(t, ξ) dξ, (4.1.3)

where Kα(t, ξ) = K−α(t, ξ). Notice that the argument ξ used here is termed the
FrFD-frequency, and it is to represent a new physical quantity that is extended
from the frequency concept to the FrFD-frequency where we can interpret the
FrFT as the FrFD-spectrum. In short briefing, the relationship between FrFT and
FT can clearly be seen by setting a = cot(α), b = csc(α) and c =

√
1− i cot(α)

in equations (4.1.1) and (4.1.2) to have

Xα(ξ) = eiπaξ
2

ŷ(bξ), where ŷ(bξ) is the FT of y(t) = c x(t) eiπat
2

.

Likewise, the well-known Parseval identity for FT can be extended to the FrFT as
well, which will be used to write some transformations in the fractional frequency-
domain and is defined by∫ ∞

−∞
x(t) y(t) dt =

∫ ∞
−∞

Xα(ξ)Yα(ξ) dξ. (4.1.4)

32



4.2 Fractional continuous wavelet transform

For a signal x(t) ∈ L2(R), the α-order fractional continuous wavelet transform
(FrCWT) of x(t) is defined by

W
α,ψ

x (a, b) =< x(t), ψ
α,a,b

(t) >=

∫ ∞
−∞

x(t) ψα,a,b(t) dt, (4.2.1)

where the α-order fractional family of wavelets ψ
α,a,b

(t) is defined by multiplying
the conventional family of wavelets ψ

a,b
(t) with a chirp as follows [8]

ψ
α,a,b

(t) = e−iπ
(
t2−b2−( t−b

a
)2
)

cot(α) ψ
a,b

(t). (4.2.2)

Thus by using Parseval identity defined above in (4.1.4), the α-order FrCWT in
the FrFD is given by [22]

W
α,ψ

x (a, b) = Aα ×
∫ ∞
−∞

eiπ(aξ)2 cot(α) Xα(ξ) Ψα(aξ)K−α(ξ, b) dξ, (4.2.3)

where Aα =
√

2π/(1 + i cot(α)). Now from equations (4.2.1) and (4.2.2), the
α-order FrCWT becomes

W
α,ψ

x (a, b) =

∫ ∞
−∞

x(t) eiπ
(
t2−b2−( t−b

a
)2
)

cot(α) ψ
a,b

(t) dt, (4.2.4)

or it can be simplified and defined as

W
α,ψ

x (a, b) = W
ψ

x̃ (a, b) e−iπ(a2+1) b
2

a2 cot(α), (4.2.5)

where

x̃(t) := x(t) e
iπ
a2

(
(a2−1)t2+2bt

)
cot(α)

. (4.2.6)

From equation (4.2.3), the analyzed signal x(t) can be retrieved back from the
α-order FrCWT as follows

x(t) =
c−1

Ψα

2π sin(α)

∫ ∞
−∞

∫ ∞
−∞

W
α,ψ

x (a, b)ψ
α,a,b

(t)
da

a2
db, (4.2.7)

where

c
Ψα

=

∫ ∞
0

|Ψα(ξ)|2 dξ
ξ
<∞. (4.2.8)

In the following proposition, on the other hand, it will be shown that we can verify
that the original signal x(b) can be retrieved back from the α-order FrCWT with
integral involving only the scale variable a:
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Proposition 4.2.1. Let W
α,ψ

x (a, b) be the α-order FrCWT of a signal x(t) defined
in (4.2.3). Then x(t) can be retrieved back by

x(b) = c−1
Ψα

∫ ∞
0

W
α,ψ

x (a, b)
da

a
, (4.2.9)

where c
Ψα
6= 0 is defined to be

c
Ψα

= Aα ×
∫ ∞

0

eiπη
2 cot(α) Ψα(η)

dη

η
. (4.2.10)

Proof. By integrating both sides of equation (4.2.3) with integral involving only
the scale variable a, we can have∫ ∞

0

W
α,ψ

x (a, b)
da

a
= Aα ×

∫ ∞
0

∫ ∞
−∞

eiπ(aξ)2 cot(α) Xα(ξ) Ψα(aξ) K−α(ξ, b) dξ
da

a

= Aα ×
∫ ∞
−∞

Xα(ξ)K−α(ξ, b)

∫ ∞
0

eiπ(aξ)2 cot(α) Ψα(aξ)
da

a
dξ.

Since Kα(b, ξ) = K−α(ξ, b) and with this setting∫ ∞
0

eiπ(aξ)2 cot(α) Ψα(aξ)
da

a
=

∫ ∞
0

eiπη
2 cot(α) Ψα(η)

dη

η
,

we will have∫ ∞
0

W
α,ψ

x (a, b)
da

a
=

∫ ∞
−∞

Xα(ξ)Kα(b, ξ)

(
Aα ×

∫ ∞
0

eiπη
2 cot(α) Ψα(η)

dη

η

)
dξ

= c
Ψα

∫ ∞
−∞

Xα(ξ)Kα(b, ξ) dξ

= c
Ψα
x(b),

which completes the proof of (4.2.9).

Now, equation (4.2.4) can be rewritten as follows

W
α,ψ

x (a, b) = e−iπ(a2+1) b
2

a2 cot(α)

∫ ∞
−∞

x(t) eiπ
(
a2−1

a2

)
cot(α) t2 ei2π

b
a2 cot(α) t ψa,b(t) dt,

(4.2.11)
and by setting

x̃(t) = x(t) eiπ
(
a2−1

a2

)
cot(α) t2 and ψ1(t) = e−i2π

b
a2 cot(α)t ψa,b(t),

it becomes

Wα,ψ
x (a, b) = e−iπ(a2+1) b

2

a2 cot(α)

∫ ∞
−∞

x̃(t)ψ1(t) dt. (4.2.12)
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Using Parseval identity of FT will help to write (4.2.12) as follows

W
α,ψ

x (a, b) = e−iπ(a2+1) b
2

a2 cot(α)

∫ ∞
−∞

̂̃x(ξ) ψ̂1(ξ)dξ, (4.2.13)

where FT of ψ1(t), ψ̂1(ξ), is defined by

ψ̂1(ξ) = e−i2π
(
b2

a2 cot(α)+ξb
)
ψ̂(
b

a
cot(α) + aξ). (4.2.14)

Thus, equation (4.2.13) in its definitive form becomes

W
α,ψ

x (a, b) = e−iπ(a2−1) b
2

a2 cot(α)

∫ ∞
−∞

̂̃x(ξ) ψ̂(
b

a
cot(α) + aξ) ei2πξb dξ. (4.2.15)

In the figure below, we use the following test signal with two components

x(t) = x1(t) + x2(t) = e2iπ(30t+10t2) + e2iπ(50t+30t2) for 0 ≤ t ≤ 1,

which is sampled uniformly with 512 sample points. Observe that the α-order
fractional CWT of x(t) defined in (4.2.15) is implemented with Morlet’s wavelet
using a fixed positive window width σ = 0.9, where µ = 1 and the rotation angle
α = 9π

16
; however, by setting α = π

2
, the FrCWT will be the conventional CWT.

One can clearly see that the α-order FrCWT provides more energy concentration
than the conventional CWT.
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Figure 4.1: Top row: The signal x(t) and the ideal IFs of x1(t) (red) and x2(t)
(blue); Bottom row: FrCWT of x(t) with σ = 0.9, µ = 1 and α = 9π

16
(Left);

Conventional CWT when α = π
2

(Middle); SST (WSST) when α = π
2

(Right).
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4.3 FrCWT-based synchrosqueezing transform

4.3.1 First-Order FrWSST

The derivation of the first-order phase transformation can be obtained by rewriting
equation (4.2.11) as follows

W
α,ψ

x (a, b) =

∫ ∞
−∞

x(at+ b) eiπ
(

(a2−1) t2+2ab t
)

cot(α) ψ(t) dt, (4.3.1.1)

and by considering the chirp signal x(t) = ei2πct with a constant frequency c > 0,
the α-order FCrWT of x(t), W

α,ψ

x (a, b), becomes

W
α,ψ

x (a, b) =

∫ ∞
−∞

ei2π
(

(a2−1) cot(α) t
2

2
+(ac+ab cot(α)) t+bc

)
ψ(t) dt. (4.3.1.2)

Now, taking the first-order partial derivative of both sides of equation (4.3.1.2)
with respect to b will lead to have

∂

∂b
W

α,ψ

x (a, b) = i2πc W
α,ψ

x (a, b) + i2πa cot(α) W
α,T ψ

x (a, b), (4.3.1.3)

where T ψ := tψ(t) and

W
α,T ψ

x (a, b) =

∫ ∞
−∞

ei2π
(

(a2−1) cot(α) t
2

2
+(ac+ab cot(α)) t+bc

)
t ψ(t) dt. (4.3.1.4)

Thus, by dividing both sides of equation (4.3.1.3) by i2πW
α,ψ

x (a, b), we will obtain
the exact IF, c, of the chirp signal x(t) which is given by

c = Re

{
∂
∂b
W

α,ψ

x (a, b)

i2πW α,ψ

x (a, b)
− a cot(α)

W
α,T ψ
x (a, b)

W α,ψ

x (a, b)

}
.

In conclusion, the first-order phase transformation, which is the best candidate to
estimate the IF, of a signal x(t) ∈ L2(R) at (a, b) on which W

α,ψ

x (a, b) 6= 0 is given
by

Ω
1st

x (a, b) = Re

{
∂
∂b
W

α,ψ

x (a, b)

i2πW α,ψ

x (a, b)
− a cot(α)

W
α,T ψ
x (a, b)

W α,ψ

x (a, b)

}
. (4.3.1.5)

The synchrosqueezed FrCWT (FrWSST) will reassign the scale variable a to the
FrFD frequency variable for getting more sharpened time-frequency representa-
tion of a signal x(t) ∈ L2(R). Thus, the FrWSST is to transform the FrCWT,
W

α,ψ

x (a, b), of x(t) to a quantity, denoted S
FrCWT

x (ξ, b), on the time-FrFD-frequency
plane, and it is defined by

S
FrCWT

x (ξ, b) =

∫
{a∈R+:W

α,ψ
x (a,b)6=0}

W
α,ψ

x (a, b) δ(Ω
1st

x (a, b)− ξ) da
a
, (4.3.1.6)
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where ξ is the frequency variable.

The analyzed signal x(t) ∈ L2(R) can be retrieved back from FrWSST and,
therefore, for a mono-component signal and c

Ψα
6= 0, by (4.2.9), we have

x(b) = c−1
Ψα

∫ ∞
0

S
FrCWT

x (ξ, b) dξ. (4.3.1.7)

However, for a multicomponent signal x(t) in (2.2.2.3), when A
k
(t) and φ

k
(t) sat-

isfy certain conditions as in definition 2.2.1, each component x
k
(t) can be retrieved

back from FrWSST, i.e., for Γ > 0

xk(b) ≈ c−1
Ψα

∫
|ξ−φ′k(b)|<Γ

S
FrCWT

x (ξ, b) dξ. (4.3.1.8)

4.3.2 Second-Order FrWSST

Here in this subsection, equation (4.3.1.1) will be used to derive the second-order
phase transformation of a signal x(t) ∈ L2(R). This new phase transformation
is associated with the second-order partial derivative of the FrCWT of a linear
frequency modulation signal x(t) defined in (3.2.2.1), which again be displayed
here

x(t) = A(t) ei2πφ(t) = ept+
q
2
t2 ei2π(ct+ r

2
t2), (4.3.2.1)

where
x′(t) =

(
p+ qt+ i2π(c+ rt)

)
x(t). (4.3.2.2)

Therefore, by taking the first-order partial derivative of both sides of equation
(4.3.1.1) with respect to b and then using equations (4.3.2.1) and (4.3.2.2), we will
have

∂

∂b
W

α,ψ

x (a, b) =
(
(p+ i2πc) + (q + i2πr) b

)
W

α,ψ

x (a, b)

+ a
(
q + i2π(r + cot(α))

)
W

α,T ψ

x (a, b).

(4.3.2.3)

By dividing both sides of this above equation (4.3.2.3) by W
α,ψ

x (a, b), we have

∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)
= p+ i2πc+ (q + i2πr) b

+ a
(
q + i2π(r + cot(α))

) W α,T ψ
x (a, b)

W α,ψ

x (a, b)
,

(4.3.2.4)

and then taking the first-order partial derivative of both sides with respect to a,
we will have

∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)
=
(
q + i2π(r + cot(α))

) ∂

∂a

(
a
W

α,T ψ
x (a, b)

W α,ψ

x (a, b)

)
. (4.3.2.5)
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Thus, for Jα(a, b) = ∂
∂a

(
a W

α,T ψ
x (a,b)

W
α,ψ
x (a,b)

)
6= 0, we have

q + i2π(r + cot(α)) =
1

Jα(a, b)
× ∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)
. (4.3.2.6)

Now, by substituting (4.3.2.6) into (4.3.2.4), we have

∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)
= p+ qb+ i2π(c+ rb)

+ a
W

α,T ψ
x (a, b)

W α,ψ

x (a, b)× Jα(a, b)

∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)
,

(4.3.2.7)

and, therefore, the exact IF, φ′(t) = c+ rb, of x(t) given in (4.3.2.1) is defined by

φ′(b) = Re

{
∂
∂b
W

α,ψ

x (a, b)

i2πW α,ψ

x (a, b)
−
(
a

W
α,T ψ
x (a, b)

W α,ψ

x (a, b)× Jα(a, b)

)
× ∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)}
.

(4.3.2.8)

For a general signal x(t), the phase transformation of x(t) is defined as

Ω2
nd

x (a, b) =



Re

{
∂
∂b
W
α,ψ
x (a,b)

i2πW
α,ψ
x (a,b)

− a W
α,T ψ
x (a,b)

W
α,ψ
x (a,b)× Jα(a,b)

∂
∂a

(
∂
∂b
W
α,ψ
x (a,b)

W
α,ψ
x (a,b)

)}
;

when Wα,ψ
x (a, b) 6= 0 and Jα(a, b) 6= 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Re

{
∂
∂b
W
α,ψ
x (a,b)

i2π W
α,ψ
x (a,b)

− a cot(α) W
α,T ψ
x (a,b)

W
α,ψ
x (a,b)

}
;

when Wα,ψ
x (a, b) 6= 0 and Jα(a, b) = 0.

(4.3.2.9)

Based on this derivation, we provide the following theorem where its proof is given
in Appendix.

Theorem 4.3.1. If x(t) is an LFM signal given by (4.3.2.1), then at (a,b) on

which Wα,ψ
x (a, b) 6= 0 and ∂

∂a

(
a W

α,T ψ
x (a,b)

W
α,ψ
x (a,b)

)
6= 0, Ω2

nd

x (a, b) defined by (4.3.2.9) is

the IF of x(t); namely, Ω2
nd

x (a, b) = φ′(b) = c+ rb.

Ultimately, with this phase transformation Ω2
nd

x (a, b) given above in (4.3.2.9),
the second-order FrWSST, S

FrCWT

x (ξ, b), of a signal x(t) ∈ L2(R) is defined by

38



S
FrCWT

x (ξ, b) =

∫
{a∈R+:W

α,ψ
x (a,b) 6=0}

W
α,ψ

x (a, b) δ(Ω
2nd

x (a, b)− ξ) da
a
, (4.3.2.10)

where ξ is the frequency variable. For reconstructing a mono-component signal
x(t) or a multicomponent signal x(t) =

∑
k xk(t) from the second-order FrWSST,

it can similarly be defined as that with Ω1st

x (a, b) for FrWSST.

39



CHAPTER 5

IFE-Fractional CWT-based SST
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5.1 IFE-CWT-based SST

First, we open Chapter 5 by introducing new approximations of the phase transfor-
mation that are associated with the first- and the second-order partial derivatives
of the IFE-CWT of a signal x(t) ∈ L2(R). They aim at achieving an accurate IF
estimation when a rough estimation of the IF of a targeted component is used.
Afterward, we describe another proposed work to generate a time-FrFD-frequency
representation with satisfactory energy concentration; namely, the instantaneous
frequency embedded fractional CWT (IFE-FrCWT), and then introducing new
synchrosqueezing transforms based on the IFE-FrCWT that will be used for the
purpose of enhancing the concentration of the TF representation.

5.1.1 First-Order IFE-WSST

For x(t) ∈ L2(R), we can rewrite equation (2.5.2) as follows

W
E,ψ

x (a, b) =

∫ ∞
−∞

x(at+ b) e−i2π
(
ϕ(at+b)−ϕ(b)−(ϕ′(b)+ξ0) at−ξ0b

)
ψ(t) dt, (5.1.1.1)

and by considering the chirp signal x(t) = ei2πct with a constant frequency c > 0,
the IFE-CWT of x(t) becomes

W
E,ψ

x (a, b) =

∫ ∞
−∞

e−i2πϕ(at+b)+i2π(ϕ′(b)+ξ0+c) at+i2π(ϕ(b)+ξ0b+cb) ψ(t) dt. (5.1.1.2)

Thus from (5.1.1.2), we will have

∂

∂b
W

E,ψ

x (a, b) = −i2πW E,ψ

xϕ′ (a, b) + i2πaϕ′′(b) W
E,T ψ

x (a, b)

+ i2π(ϕ′(b) + ξ0 + c) W
E,ψ

x (a, b).

(5.1.1.3)

Therefore, at (a, b) on which W
E,ψ

x (a, b) 6= 0, the exact IF, c, of the chirp signal
x(t) is given by

c = Re

{
∂
∂b
W

E,ψ

x (a, b)

i2πW E,ψ

x (a, b)
+
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)
− aϕ′′(b) W

E,T ψ
x (a, b)

W E,ψ

x (a, b)

}
− ϕ′(b)− ξ0.

Thus, for a general signal x(t), the first-order phase transformation at (a, b) on
which W

E,ψ

x (a, b) 6= 0 is defined to be

Ω1
st

x (a, b) =Re

{
∂
∂b
W

E,ψ

x (a, b)

i2πW E,ψ

x (a, b)
+
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)
− aϕ′′(b) W

E,T ψ
x (a, b)

W E,ψ

x (a, b)

}
− ϕ′(b)− ξ0.

(5.1.1.4)
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Eventually, the IFE synchrosqueezing transform (IFE-WSST) of x(t), denoted
S

E−CWT

x (ξ, b), is defined by

S
E−CWT

x (ξ, b) =

∫
{a∈R+:W

E,ψ
x (a,b)6=0}

W
E,ψ

x (a, b) δ(Ω1
st

x (a, b)− ξ) da
a
, (5.1.1.5)

where ξ is the frequency variable.

Now, with equation (2.5.5), the input signal x(t) can be retrieved back from
the IFE-WSST as follows

x(b) = c−1
ψ

e−i2πξ0b
∫ ∞

0

S
E−CWT

x (ξ, b) dξ. (5.1.1.6)

In addition, the kth component x
k
(t) of x(t) defined in (2.2.2.3), which satisfying

certain conditions, can be retrieved back from the IFE-WSST as follows

x
k
(b) ≈ c−1

ψ
e−i2πξ0b

∫
|ξ−φ′

k
(b)|<Γ

S
E−CWT

x (ξ, b) dξ, (5.1.1.7)

for certain Γ > 0.

5.1.2 Second-Order IFE-WSST

The major idea is to define a new phase transformation Ω
2nd

x which is associated
with the second-order partial derivative of the IFE-CWT of a signal x(t) ∈ L2(R).
Notice that the derivation of the phase transformation and the provided formula-

tion for Ω
2nd

x are slightly different not only from that was introduced in [47], where
it was based on reassignment operators, but also from that was presented in [30].
Now, for a linear frequency modulation signal x(t) defined in (3.2.2.1), taking the
first-order partial derivative of both sides of equation (5.1.1.1) with respect to b
gives that

∂

∂b
W

E,ψ

x (a, b) =
(
p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

)
W

E,ψ

x (a, b)

+
(
q + i2π(r + ϕ′′(b))

)
aW

E,T ψ

x (a, b)

− i2πW E,ψ

xϕ′ (a, b).

(5.1.2.1)

Thus at (a, b) on which W
E,ψ

x (a, b) 6= 0, we have
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∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)
= p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

+ (q + i2π(r + ϕ′′(b))) a
W

E,T ψ
x (a, b)

W E,ψ

x (a, b)

− i2π
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

(5.1.2.2)

Now, taking partial derivative ∂
∂a

to both sides of this above equation leads to
have

∂

∂a

( ∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)

)
=
(
q + i2π(r + ϕ′′(b))

) ∂
∂a

(
a
W

E,T ψ
x (a, b)

W E,ψ

x (a, b)

)
− i2π ∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)
.

(5.1.2.3)

Thus we see that

q + i2π(r + ϕ′′(b)) =
1

JE(a, b)
×
[
∂

∂a

( ∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)

)
+ i2π

∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)]
,

(5.1.2.4)

where J
E
(a, b) = ∂

∂a

(
a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)

)
6= 0. Now by substituting (5.1.2.4) into (5.1.2.2),

we will have

∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)
= p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

− i2π
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)
+ a

W
E,T ψ
x (a, b)

W E,ψ

x (a, b) · JE(a, b)
×[

∂

∂a

( ∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)

)
+ i2π

∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)] (5.1.2.5)

Therefore, the exact IF, φ′(b) = c + rb, of the linear frequency modulation x(t)
given in (3.2.2.1) is defined by

φ′(b) = c+ rb = Re

{ ∂
∂b
W

E,ψ

x (a, b)

i2π W E,ψ

x (a, b)
+
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

−
([

∂

∂a

( ∂
∂b
W

E,ψ

x (a, b)

i2πW E,ψ

x (a, b)

)
+

∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)]
× a W

E,T ψ
x (a, b)

W E,ψ

x (a, b) × JE(a, b)

)}
− ϕ′(b)− ξ0.

(5.1.2.6)
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For a general signal x(t), the phase transformation of x(t) is defined by

Ω2
nd

x (a, b) =



Re

{
∂
∂b
W

E,ψ
x (a,b)

i2πW
E,ψ
x (a,b)

+
W

E,ψ

xϕ′ (a,b)

W
E,ψ
x (a,b)

−([
∂
∂a

(
∂
∂b
W

E,ψ
x (a,b)

i2πW
E,ψ
x (a,b)

)
+ ∂

∂a

(
W

E,ψ

xϕ′ (a,b)

W
E,ψ
x (a,b)

)]
×a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)× JE (a,b)

)}
− ϕ′(b)− ξ0;

when W
E,ψ

x (a, b) 6= 0 and J
E
(a, b) 6= 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Re

{
∂
∂b
W

E,ψ
x (a,b)

i2πW
E,ψ
x (a,b)

+
W

E,ψ

xϕ′ (a,b)

W
E,ψ
x (a,b)

− aϕ′′(b)

×W
E,T ψ
x (a,b)

W
E,ψ
x (a,b)

}
− ϕ′(b)− ξ0;

when W
E,ψ

x (a, b) 6= 0 and J
E
(a, b) = 0.

(5.1.2.7)

Thus, we provide the following theorem where its proof is given in Appendix.

Theorem 5.1.1. If x(t) is an LFM signal given by (4.3.2.1), then at (a,b) on

which W
E,ψ

x (a, b) 6= 0 and ∂
∂a

(
a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)

)
6= 0, Ω2

nd

x (a, b) defined by (5.1.2.7) is

the IF of x(t); namely, Ω2
nd

x (a, b) = φ′(b) = c+ rb.

Ultimately, with this phase transformation Ω2
nd

x (a, b) defined above in (5.1.2.7),
the second-order IEF-WSST, S

E−CWT

x (ξ, b), of a signal x(t) ∈ L2(R) is defined as
in (5.1.1.5)

S
E−CWT

x (ξ, b) =

∫
{a∈R+:W

E,ψ
x (a,b)6=0}

W
E,ψ

x (a, b) δ(Ω2
nd

x (a, b)− ξ) da
a
, (5.1.2.8)

where ξ is the frequency variable. Reconstructing a mono-component signal x(t)
or multicomponent signal x(t) =

∑
k xk(t) from the second-order IEF-WSST will

be similar to that were defined in (5.1.1.6) and (5.1.1.7) respectively with Ω1st

x (a, b)
for IEF-WSST.

5.2 Instantaneous frequency-embedded FrCWT

For a signal x(t) ∈ L2(R), we consider the generalized signal form given by

x
ϕ,b,ξ0

(t) = x(t) e−i2π(ϕ(t)−ϕ(b)−ϕ′(b)(t−b)−ξ0t), (5.2.1)
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where ϕ(t) is a differentiable function with ϕ′ > 0 and ξ0 > 0. Then the α-
order instantaneous frequency embedded fractional continuous wavelet transform
(IFE-FrCWT), denoted W

α,E,ψ

x (a, b), is defined as follows

W
α,E,ψ

x (a, b) =< x
ϕ,b,ξ0

(t), ψ
α,a,b

(t) >=

∫ ∞
−∞

x
ϕ,b,ξ0

(t) ψ
α,a,b

(t) dt, (5.2.2)

where ψ
α,a,b

is defined in (4.2.2). Thus, from equations (5.2.1) and (5.2.2), the
α-order IFE-FrCWT of x(t) can be written in the following form

W
α,E,ψ

x (a, b) = ei2πϕ(b)−iπ(1+a2) b
2

a2 cot(α)−i2πbϕ′(b)
∫ ∞
−∞

x̃(t) ψ̃(t) dt, (5.2.3)

where

x̃(t) = x(t) e−i2πϕ(t)+iπ
(

1− 1
a2

)
cot(α) t2 , (5.2.4)

and
ψ̃(t) = e−i2π(ξ0+ b

a2 cot(α)+ϕ′(b)) t ψ
a,b

(t). (5.2.5)

Now, the FT of ψ̃(t) is given by

̂̃
ψ(ξ) = e−i2π(ξ0+ξ+ b

a2 cot(α)+ϕ′(b)) b ψ̂(aξ + aξ0 + aϕ′(b) +
b

a
cot(α)), (5.2.6)

and by using Parseval identity of FT, the α-order IFE-FrCWT is defined by

W
α,E,ψ

x (a, b) =ei2π(ϕ(b)+ξ0b+
(

1−a2

2a2

)
b2 cot(α))

×
∫ ∞
−∞

̂̃x(ξ) ψ̂(aξ + aξ0 + aϕ′(b) +
b

a
cot(α)) ei2πξb dξ.

(5.2.7)

Since the α-order FrFT of x
ϕ,b,ξ0

(t) given by (5.2.1) can be defined as

Xα;ϕ,b,ξ0(ξ) =

∫ ∞
−∞

x
ϕ,b,ξ0

(t)Kα(t, ξ)dt, (5.2.8)

and by using Parseval identity of FrFT defined in (4.1.4), we provide the following
proposition to define the α-order IFE-FrCWT in the FrFD.

Proposition 5.2.1. Let W
α,E,ψ

x (a, b) be the α-order IFE-FrCWT of a signal x(t)
defined in (5.2.2). Then, for Aα =

√
2π/(1 + i cot(α)), the α-order IFE-FrCWT

in the FrFD is given by

W
α,E,ψ

x (a, b) = Aα ×
∫ ∞
−∞

eiπ(aξ)2 cot(α) X
α;ϕ,b,ξ0

(ξ) Ψα(aξ)K−α(ξ, b) dξ. (5.2.9)
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Proof. By taking the α-order FrFT on both sides of equation (4.2.2), we have

Ψ
α,a,b

(ξ) =

∫ ∞
−∞

ψ
α,a,b

(t)Kα(t, ξ) dt

=

∫ ∞
−∞

e−iπ(t2−b2−( t−b
a

)2) cot(α) ψ
a,b

(t) Bα e
iπ(t2+ξ2) cot(α)−itξ csc(α) dt

=

∫ ∞
−∞

1

a
ψ
(t− b

a

)
Bα e

iπ(b2+ξ2) cot(α)−itξ csc(α) eiπ( t−b
a

)2 cot(α) dt,

which we can rewrite it as follows

Ψ
α,a,b

(ξ) =
1

Bα

∫ ∞
−∞

(
1

a
ψ
(t− b

a

)
Bα e

iπ(b2+ξ2) cot(α)−i
(
t−b
a

+ b
a

)
aξ csc(α)

Bα e
iπ
(

( t−b
a

)2+(aξ)2−(aξ)2
)

cot(α)

)
dt

=
e−iπ(aξ)2 cot(α)

Bα

∫ ∞
−∞

(
1

a
ψ
(t− b

a

)
Bα e

iπ
(

( t−b
a

)2+(aξ)2
)

cot(α)−i( t−b
a

) aξ csc(α)

Bα e
iπ(b2+ξ2) cot(α)−ibξ csc(α)

)
dt

=
e−iπ(aξ)2 cot(α)

Bα

∫ ∞
−∞

ψ
(t− b

a

)
Bα e

iπ
(

( t−b
a

)2+(aξ)2
)

cot(α)−i( t−b
a

) aξ csc(α)

Kα(b, ξ) d
(t− b

a

)
=

1

Bα

Kα(b, ξ) e−iπ(aξ)2 cot(α)

∫ ∞
−∞

ψ(t) Bα e
iπ
(
t2+(aξ)2

)
cot(α)−it aξ csc(α) dt

=
1

Bα

Kα(b, ξ) e−iπ(aξ)2 cot(α)

∫ ∞
−∞

ψ(t) Kα(t, aξ) dt

=
1

Bα

Kα(b, ξ) Ψα(aξ) e−iπ(aξ)2 cot(α).

From the Parseval identity of the FrFT defined in (4.1.4) and then substituting
Ψ
α,a,b

(ξ) = 1
Bα

Kα(b, ξ) Ψα(aξ) e−iπ(aξ)2 cot(α) into (5.2.2), we will have

Wα,E,ψ
x (a, b) =< X

α;ϕ,b,ξ0
(ξ),

1

Bα

Kα(b, ξ) Ψ
σ(b);α

(aξ) e−iπ(aξ)2 cot(α) >

=
1

Bα

×
∫ ∞
−∞

eiπ(aξ)2 cot(α) X
α;ϕ,b,ξ0

(ξ) Ψα(aξ)Kα(b, ξ) dξ

= Aα ×
∫ ∞
−∞

eiπ(aξ)2 cot(α) X
α;ϕ,b,ξ0

(ξ) Ψα(aξ)K−α(b, ξ) dξ.

This proves (5.2.9).
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In the following proposition, we will see that the original signal x(b) can be
retrieved back from its α-order IFE-FrCWT with integral involving only the scale
variable a.

Proposition 5.2.2. Let W
α,E,ψ

x (a, b) be the α-order IFE-FrCWT of a signal x(t)
defined in (5.2.9). Then x(t) can be retrieved back by

x(b) = c−1
Ψα

e−i2πξ0b
∫ ∞

0

W
α,E,ψ

x (a, b)
da

a
, (5.2.10)

where c
Ψα
6= 0 is as defined in (4.2.10).

Proof. Integrating both sides of equation (5.2.9) with integral involving only the
scale variable a leads to have∫ ∞

0

W
α,E,ψ

x (a, b)
da

a
= Aα ×

∫ ∞
0

∫ ∞
−∞

eiπ(aξ)2 cot(α) X
α;ϕ,b,ξ0

(ξ) Ψα(aξ) K−α(ξ, b) dξ
da

a

= Aα ×
∫ ∞
−∞

X
α;ϕ,b,ξ0

(ξ)K−α(ξ, b)

∫ ∞
0

eiπ(aξ)2 cot(α) Ψα(aξ)
da

a
dξ

=

∫ ∞
−∞

X
α;ϕ,b,ξ0

(ξ)Kα(b, ξ)

(
Aα ×

∫ ∞
0

eiπη
2 cot(α) Ψα(η)

dη

η

)
dξ

= c
Ψα

∫ ∞
−∞

X
α;ϕ,b,ξ0

(ξ)Kα(b, ξ) dξ

= c
Ψα

x
ϕ,b,ξ0

(b).

From equation (5.2.1), x
ϕ,b,ξ0

(b) = x(b) ei2πξ0b and then we have∫ ∞
0

W
α,E,ψ

x (a, b)
da

a
= c

Ψα
x(b) ei2πξ0b,

which completes the proof of (5.2.10).

5.3 IFE-FrCWT-based SST

5.3.1 First-Order IFE-FrWSST

We can rewrite the α-order IFE-FrCWT of x(t), W
α,E,ψ

(a, b), defined in (5.2.2) as
follows

W
α,E,ψ

x (a, b) =

∫ ∞
−∞
{ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at}

× eiπ(a2−1) cot(α) t2x(at+ b)ψ(t) dt,

(5.3.1.1)
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and by considering the chirp signal x(t) = ei2πct with a constant frequency c > 0,
the α-order IFE-FrCWT of x(t) becomes

W
α,E,ψ

x (a, b) =

∫ ∞
−∞
{e−i2π(ϕ(at+b)−(ξ0+b cot(α)+ϕ′(b)+c)at−ϕ′(b)−ξ0b−cb)}

× eiπ(a2−1) cot(α) t2 ψ(t) dt.

(5.3.1.2)

Now, the first-order phase transformation derivation can be found by taking the
first-order partial derivative of both sides of this above equation (5.3.1.2) with
respect to b; i.e., we can get

∂

∂b
W

α,E,ψ

x (a, b) =− i2πW α,E,ψ

xϕ′ (a, b)

+ i2π a(ϕ′′(b) + cot(α))W
α,E,T ψ

x (a, b)

+ i2π(ϕ′(b) + ξ0 + c)W
α,E,ψ

x (a, b),

(5.3.1.3)

where T ψ := tψ(t). Thus, if we divide both sides of this above equation (5.3.1.3)
by W

α,E,ψ

x (a, b) 6= 0, the exact IF, c, of the chirp signal x(t) can be extracted as
follows

c = Re

{
∂
∂b
W

α,E,ψ

x (a, b)

i2πW α,E,ψ

x (a, b)
+
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

− a(ϕ′′(b) + cot(α))
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)

}
− ϕ′(b)− ξ0.

(5.3.1.4)

Ultimately, the first-order phase transformation of a signal x(t) ∈ L2(R) at (a, b)
on which W

α,E,ψ

x (a, b) 6= 0 is given by

Ω1st

x (a, b) = Re

{
∂
∂b
W

α,E,ψ

x (a, b)

i2πW α,E,ψ

x (a, b)
+
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

− a(ϕ′′(b) + cot(α))
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)

}
− ϕ′(b)− ξ0.

(5.3.1.5)

Thus the first-order IFE-FrWSST, denoted S
E−FrCWT

x (ξ, b), on the time-FrFD-
frequency plane is defined by

S
E−FrCWT

x (ξ, b) =

∫
{a∈R+:W

α,E,ψ
x (a,b)6=0}

W
α,E,ψ

x (a, b) δ(Ω1st

x (a, b)− ξ) da
a
, (5.3.1.6)

where ξ is the frequency variable.
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It is very clear now to see that the analyzed signal x(t) ∈ L2(R) can be retrieved
back from the first-order IFE-FrWSST. Thus for a mono-component signal and
c

Ψα
6= 0, by (5.2.10), we have

x(b) = c−1
Ψα

e−i2πξ0b
∫ ∞

0

S
E−FrCWT

x (ξ, b) dξ. (5.3.1.7)

However, for a multicomponent signal x(t) defined in (2.2.2.3), when A
k
(t) and

φ
k
(t) satisfy certain conditions as in definition 2.2.1, each component x

k
(t) can be

retrieved back from the first-order IFE-FrWSST, i.e., for Γ > 0

x
k
(b) ≈ c−1

Ψα
e−i2πξ0b

∫
|ξ−φ′

k
(b)|<Γ

S
E−FrCWT

x (ξ, b) dξ. (5.3.1.8)

5.3.2 Second-Order IFE-FrWSST

The second-order IFE-FrWSST is considered in this subsection, where equation
(5.3.1.1) is displayed here

W
α,E,ψ

x (a, b) =

∫ ∞
−∞
{ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at}

× eiπ(a2−1) cot(α) t2 x(at+ b)ψ(t) dt,

(5.3.2.1)

and then used to derive the second-order phase transformation of a signal x(t) ∈
L2(R). This new phase transformation is associated with the second-order partial
derivative of the α-order IFE-FrCWT of a linear frequency modulation signal x(t)
defined in (3.2.2.1), which also displayed here

x(t) = A(t) ei2πφ(t) = ept+
q
2
t2 ei2π(ct+ r

2
t2), (5.3.2.2)

where
x′(t) =

(
p+ qt+ i2π(c+ rt)

)
x(t). (5.3.2.3)

Now, by taking the first-order partial derivative of both sides of the equation
(5.3.2.1) with respect to b and then using equations (5.3.2.2) and (5.3.2.3), we will
have

∂

∂b
W

α,E,ψ

x (a, b) =
(
p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

)
W

α,E,ψ

x (a, b)

+
(
(q + i2πr) + i2π(cot(α) + ϕ′′(b))

)
aW

α,E,T ψ

x (a, b)

− i2πW α,E,ψ

xϕ′ (a, b).

(5.3.2.4)
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Dividing both sides of this above equation (5.3.2.4) by W
α,E,ψ

x (a, b) will lead to have

∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)
= p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

+
(
(q + i2πr) + i2π(cot(α) + ϕ′′(b))

)
a
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)

− i2π
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)
,

(5.3.2.5)

and then by taking the first-order partial derivative of both sides with respect to
a, we get

∂

∂a

( ∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)

)
=
(
(q + i2πr) + i2π(cot(α) + ϕ′′(b))

) ∂
∂a

(
a
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)

)
− i2π ∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)
(5.3.2.6)

Thus we see that

q + i2πr + i2π(cot(α) + ϕ′′(b)) =
1

JE

α (a, b)
×
[
∂

∂a

( ∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)

)
+ i2π

∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)] (5.3.2.7)

where J
E

α (a, b) = ∂
∂a

(
a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

)
6= 0. Now by substituting (5.3.2.7) into (5.3.2.5),

we will have
∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)
= p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

+

([
∂

∂a

( ∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)

)
+ i2π

∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)]
× a W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b) × JE

α (a, b)

)
+ i2π

W
α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)
,

(5.3.2.8)

and then the exact IF, φ′(t), of x(t) given in (5.3.2.2) is defined by

φ′(b) = c+ rb = Re

{ ∂
∂b
W

α,E,ψ

x (a, b)

i2πW α,E,ψ

x (a, b)
+
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

−
([

∂

∂a

( ∂
∂b
W

α,E,ψ

x (a, b)

i2πW α,E,ψ

x (a, b)

)
+

∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)]
× a W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b) × JE

α (a, b)

)}
− ϕ′(b)− ξ0.

(5.3.2.9)
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For a general signal x(t), the phase transformation of x(t) is defined as

Ω2nd

x (a, b) =



Re

{
∂
∂b
W
α,E,ψ
x (a,b)

i2πW
α,E,ψ
x (a,b)

+
W
α,E,ψ

xϕ′ (a,b)

W
α,E,ψ
x (a,b)

−([
∂
∂a

(
∂
∂b
W
α,E,ψ
x (a,b)

i2πW
α,E,ψ
x (a,b)

)
+ ∂

∂a

(
W
α,E,ψ

xϕ′ (a,b)

W
α,E,ψ
x (a,b)

)]
× a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)× JE

α (a,b)

)}
− ϕ′(b)− ξ0;

when W
α,E,ψ

x (a, b) 6= 0 and J
E

α (a, b) 6= 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Re

{
∂
∂b
W
α,E,ψ
x (a,b)

i2πW
α,E,ψ
x (a,b)

+
W
α,E,ψ

xϕ′ (a,b)

W
α,E,ψ
x (a,b)

− a(ϕ′′(b) + cot(α))

×W
α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

}
− ϕ′(b)− ξ0;

when W
α,E,ψ

x (a, b) 6= 0 and J
E

α (a, b) = 0.

(5.3.2.10)

Thus, from this above derivation we provide the following theorem where its proof
is given in Appendix.

Theorem 5.3.1. If x(t) is an LFM signal given by (4.3.2.1), then at (a,b) on

which W
α,E,ψ

x (a, b) 6= 0 and ∂
∂a

(
a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

)
6= 0, Ω2

nd

x (a, b) defined by (5.3.2.10)

is the IF of x(t); namely, Ω2
nd

x (a, b) = φ′(b) = c+ rb.

Eventually, with this phase transformation Ω2
nd

x (a, b) defined above in (5.3.2.10),
the second-order IEF-FrWSST, S

E−FrCWT

x (ξ, b), of a signal x(t) ∈ L2(R) is defined
as in (5.3.1.6)

S
E−FrCWT

x (ξ, b) =

∫
{a∈R+:W

α,E,ψ
x (a,b)6=0}

W
α,E,ψ

x (a, b) δ(Ω2nd

x (a, b)− ξ) da
a
, (5.3.2.11)

where ξ is the frequency variable. Reconstructing a mono-component signal x(t) or
multicomponent signal x(t) =

∑
k xk(t) back from the second-order IEF-FrWSST

is similar to those were defined in (5.3.1.7) and (5.3.1.8) respectively with Ω1st

x (a, b)
for IEF-FrWSST.
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CHAPTER 6

Adaptive FrCWT - Based SST
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In a recent study, a time-varying window width was adapted to the SST based

on the STFT, where minimizing the R
′
enyi entropy of the SST is the used way to

select the width of the window [55]. Later on, Li, Cai and Jiang in [35] proposed
the adaptive CWT and its corresponding SST’s with a time-varying parameter.
As known in the literature on SST, the common used continuous wavelets for the
SST based on the CWT are the bump wavelet ψ

bump
(t) defined by

ψ̂
bump

(ξ) = e
1− 1

1−σ2(ξ−µ)2 χ
(µ− 1

σ ,µ+ 1
σ )

(ξ) with σµ > 1, (6.1)

and the Morlet’s wavelet ψ
Morlet

(t) defined by

ψ̂
Morlet

(ξ) = e−2σ2π2(ξ−µ)2 − e−2σ2π2(ξ+µ)2

, (6.2)

where σ > 0 and µ > 0. In these wavelets, the parameter, σ, controls the width
of the TF localization window, and it is constantly selected to be a fixed positive
constant. However, the authors in [35] considered a time-varying parameter, σ(t),
in their study to define the CWT (called the adaptive CWT) and its corresponding
SST’s for IF estimation and multicomponent signal separation.

6.1 Adaptive CWT

We briefly review the CWT with a time-varying parameter in this section by
considering the continuous wavelets of the form

ψσ(t) =
1

σ
ϑ(
t

σ
) ei2π µt − 1

σ
ϑ(
t

σ
) cσ(µ), (6.1.1)

or, in the frequency domain,

ψ̂σ(ξ) = ϑ̂(σ(µ− ξ))− cσ(µ) ϑ̂(σξ), (6.1.2)

where µ > 0, ϑ(t) ∈ L2(R) with certain decaying order as t → ∞ and cσ(µ) is a

constant such that ψ̂σ(0) = 0. One can let cσ(µ) = 0 if ϑ̂(−σµ) = 0; in another

respect, one can let cσ(µ) = ϑ̂(−σµ)/ϑ̂(0) if ϑ̂(−σµ) 6= 0. For instance, if ϑ(t) is

given by ϑ̂(ξ) = e
1− 1

1−ξ2 χ
(−1,1)

(ξ), then ψσ(t) = 1
σ
ϑ( t

σ
) ei2π µt is the bump wavelet

defined in (6.1). However, if ϑ(t) is the Gaussian function ϑ(t) = 1√
2π
e−

t2

2 , then

ψσ(t) is the Morlet’s wavelet defined in (6.2).

It is noticeable that the representation of the CWT is effected by the choice of
the parameter σ for the continuous wavelet ψσ(t). Now, by using the time-varying
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parameter, σ(t), the adaptive CWT of x(t) (a slowly increasing function) with a
continuous wavelet ψσ given in (6.1.1) is defined by

W
ψ

x (a, b;σ(b)) = 〈x(t), ψ
σ(b);a,b

(t)〉 =

∫ ∞
−∞

x(t) ψ
σ(b);a,b

(t) dt, (6.1.3)

or, in the frequency domain,

W
ψ

x (a, b;σ(b)) =

∫ ∞
−∞

x̂(ξ) ψ̂
σ(b)

(aξ) ei2πξbdξ, (6.1.4)

where ψ
σ(b);a,b

(t) = 1
a
ψ
σ(b)

( t−b
a

) is the adaptive family of wavelets and σ(b) is a
positive function. For restricted a > 0, the above equation (6.1.4) becomes

W
ψ

x (a, b;σ(b)) =

∫ ∞
0

x̂(ξ) ψ̂
σ(b)

(aξ) ei2πξbdξ (6.1.5)

if ψσ or x(t) is analytic. Consequently, an analytic signal x(t) can be retrieved
back from the adaptive CWT as

x(b) = c−1
ψ

(b)

∫ ∞
0

W
ψ

x (a, b;σ(b))
da

a
, (6.1.6)

where

c
ψ
(b) =

∫ ∞
0

ψ̂
σ(b)

(aξ)
dξ

ξ
. (6.1.7)

In addition, if ψσ is analytic, then a real-valued signal x(t) can be retrieved back
as

x(b) = Re

(
2 c−1

ψ
(b)

∫ ∞
0

W
ψ

x (a, b;σ(b))
da

a

)
. (6.1.8)

In practice, ϑ is chosen to be a fast decaying function and therefore the second

term in (6.1.2), cσ(µ) ϑ̂(−σξ), is extremely small. For instance, when ψσ is the
Morlet’s wavelet, the second term in (6.1.2) equals e−2σ2π2(ξ2+µ2) and therefore it
is a negligible quantity if σ = µ = 1, i.e., e−2σ2π2(ξ2+µ2) ≤ e−2π2

= 2.6753 × 10−9.
Now, it is just for simplification that ψσ is considered as follows

ψσ(t) =
1

σ
ϑ(
t

σ
) ei2π µt, (6.1.9)

or, in the frequency domain,

ψ̂σ(ξ) = ϑ̂(σ(µ− ξ)). (6.1.10)

Thus, the associated adaptive CWT is defined by

W
ψ

x (a, b;σ(b)) =

∫ ∞
−∞

x(at+ b)
1

σ(b)
ϑ(

t

σ(b)
) e−i2π µt dt. (6.1.11)
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If ϑ is the Gaussian function, ϑ(t) = 1√
2π
e−

t2

2 , then

ψσ(t) =
1

σ
√

2π
e−

1
2

( t
σ

)2

ei2πµt (6.1.12)

or, in the frequency domain,

ψ̂σ(ξ) = e−2π2σ2(ξ−µ)2

(6.1.13)

is the Morlet’s wavelet in the simplified version.

6.2 Adaptive CWT-based SST

6.2.1 First-Order AWSST

To derive the first-order phase transformation, we consider the chirp signal x(t) =
ei2πct with a constant frequency c > 0. Then from equation (6.1.11), we have

W
ψ

x (a, b;σ(b)) =

∫ ∞
−∞

ei2πc(at+b)
1

σ(b)
ϑ(

t

σ(b)
) e−i2π µt dt. (6.2.1.1)

Taking the first-order partial derivative of this above equation (6.2.1.1) with re-
spect to b gives that

∂

∂b
W

ψ

x (a, b;σ(b)) =
(
i2π c− σ′(b)

σ(b)

)
W

ψ

x (a, b;σ(b))− σ′(b)

σ(b)
W

ψ2

x (a, b;σ(b)),

(6.2.1.2)
where

ψ2(t) =
t

σ2(b)
ϑ′(

t

σ(b)
) ei2πµt, (6.2.1.3)

or, in the frequency domain, from (2.1.5)

ψ̂2(ξ) = −ϑ̂(σ(b)(ξ − µ))− σ(b)(µ+ ξ) ϑ̂
′
(σ(b)(ξ − µ)), (6.2.1.4)

and

W
ψ2

x (a, b;σ(b)) =

∫ ∞
−∞

x(at+ b)
t

σ2(b)
ϑ′(

t

σ(b)
) e−i2π µt dt. (6.2.1.5)

Thus, if W
ψ

x (a, b;σ(b)) 6= 0, the exact IF, c, of x(t) can be obtained by

c =
∂
∂b
W

ψ

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))
+
σ′(b)

σ(b)

W
ψ2

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))
+

σ′(b)

i2π σ(b)
. (6.2.1.6)
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From that, for a general signal x(t) ∈ L2(R), the first-order phase transformation
of x(t) at (a, b) on which W

ψ

x (a, b;σ(b)) 6= 0 is given to be the real part of the
quantity on the right-hand side of (6.2.1.6)

Ω1st

x (a, b;σ(b)) = Re

{ ∂
∂b
W

ψ

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))
+
σ′(b)

σ(b)

W
ψ2

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))

}
. (6.2.1.7)

Thus the synchrosqueezed ACWT (AWSST), denoted S
ACWT

x (ξ, b;σ(b)), on the
time-FD-frequency plane is defined by

S
ACWT

x (ξ, b;σ(b)) =

∫
I

W
ψ

x (a, b;σ(b)) δ(Ω1
st

x (a, b;σ(b))− ξ) da
a
, (6.2.1.8)

where ξ is the frequency variable and I = {a ∈ R+ : W
ψ

x (a, b;σ(b)) 6= 0}. Now, for
an analytic mono-component signal x(t) ∈ L2(R), by (6.1.6), it can be retrieved
back from the AWSST as

x(b) = c−1
ψ

(b)

∫ ∞
0

S
ACWT

x (ξ, b;σ(b)) dξ, (6.2.1.9)

and for a real-valued mono-component signal x(t) ∈ L2(R), by (6.1.8), it can be
retrieved back as

x(b) = Re

(
2 c−1

ψ
(b)

∫ ∞
0

S
ACWT

x (ξ, b;σ(b)) dξ

)
, (6.2.1.10)

where c
ψ
(b) is defined by (6.1.7). In addition, for multicomponent signal x(t) in

(2.2.2.3), the kth component x
k
(b) can be retrieved back from the AWSST for

certain Γ > 0 as follows

x
k
(b) ≈ Re

(
2 c−1

ψ
(b)

∫
|ξ−φ′

k
(b)|<Γ

S
ACWT

x (ξ, b;σ(b)) dξ

)
. (6.2.1.11)

If ψσ is as defined by (6.1.13), then

Re

{
W

ψ2

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))

}
= Re

{
1

i2π
(2π2σ2(ac− µ)2 − 1)

}
= 0,

and therefore the first-order phase transformation of x(t) at (a, b) on whichW
ψ

x (a, b;σ(b)) 6=
0 may be defined by

Ω1st

x (a, b;σ(b)) = Re

{ ∂
∂b
W

ψ

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))

}
. (6.2.1.12)
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6.2.2 Second-Order AWSST

By considering the linear frequency modulation signal x(t) defined in (3.2.2.1),
where x′(t) = (p+ qt+ i2π(c+ rt))x(t), and from equation (6.1.11) we have

∂

∂b
W

ψ

x (a, b;σ(b)) =

∫ ∞
−∞

x′(at+ b)
1

σ(b)
ϑ(

t

σ(b)
) e−i2π µt dt

−
∫ ∞
−∞

x(at+ b)
σ′(b)

σ2(b)
ϑ(

t

σ(b)
) e−i2π µt dt

−
∫ ∞
−∞

x(at+ b)
t σ′(b)

σ3(b)
ϑ′(

t

σ(b)
) e−i2π µt dt,

(6.2.2.1)

or as in the following abbreviated form

∂

∂b
W

ψ

x (a, b;σ(b)) = (p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)
)W

ψ

x (a, b;σ(b))

+ (q + i2πr) a σ(b)W
ψ1

x (a, b;σ(b))

− σ′(b)

σ(b)
W

ψ2

x (a, b;σ(b)),

(6.2.2.2)

where

ψ1(t) =
t

σ2(b)
ϑ(

t

σ(b)
) ei2πµt, (6.2.2.3)

or, in the frequency domain, from (2.1.4)

ψ̂1(ξ) = −i σ(b) (ϑ̂)
′
(σ(b)(ξ − µ)), (6.2.2.4)

and

W
ψ1

x (a, b;σ(b)) =

∫ ∞
−∞

x(at+ b)
t

σ2(b)
ϑ(

t

σ(b)
) e−i2π µt dt. (6.2.2.5)

Thus at (a, b) on which W
ψ

x (a, b;σ(b)) 6= 0 we get

∂
∂b
W

ψ

x (a, b;σ(b))

W ψ

x (a, b;σ(b))
= p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)

+ (q + i2πr) a σ(b)
W

ψ1

x (a, b;σ(b))

W ψ

x (a, b;σ(b))

− σ′(b)

σ(b)

W
ψ2

x (a, b;σ(b))

W ψ

x (a, b;σ(b))
.

(6.2.2.6)

Now, taking partial derivative ∂
∂a

to both sides of this above equation (6.2.2.6)
leads to have

∂

∂a

( ∂
∂b
W

ψ

x (a, b;σ(b))

W ψ

x (a, b;σ(b))

)
= (q + i2πr)σ(b)

∂

∂a

(
a
W

ψ1

x (a, b;σ(b))

W ψ

x (a, b;σ(b))

)
− σ′(b)

σ(b)

∂

∂a

(
W

ψ2

x (a, b;σ(b))

W ψ

x (a, b;σ(b))

)
.

(6.2.2.7)
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Thus, if ∂
∂a

(
a W

ψ1
x (a,b;σ(b))

W
ψ
x (a,b;σ(b))

)
6= 0, then (q + i2πr)σ(b) = J

σ(b)
(a, b) where J

σ(b)
(a, b)

is defined by

J
σ(b)

(a, b) =
1

∂
∂a

(
a W

ψ1
x (a,b;σ(b))

W
ψ
x (a,b;σ(b))

)×[ ∂
∂a

( ∂
∂b
W

ψ

x (a, b;σ(b))

W ψ

x (a, b;σ(b))

)
+
σ′(b)

σ(b)

∂

∂a

(
W

ψ2

x (a, b;σ(b))

W ψ

x (a, b;σ(b))

)]
(6.2.2.8)

By substituting (6.2.2.8) into (6.2.2.6), we have

∂
∂b
W

ψ

x (a, b;σ(b))

W ψ

x (a, b;σ(b))
= p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)

+ J
σ(b)

(a, b)× a
W

ψ1

x (a, b;σ(b))

W ψ

x (a, b;σ(b))
− σ′(b)

σ(b)

W
ψ2

x (a, b;σ(b))

W ψ

x (a, b;σ(b))
.

(6.2.2.9)

Therefore, the exact IF, φ′(b) = c + rb, of the linear frequency modulation x(b)
given in (3.2.2.1) is defined by

φ′(b) =
∂
∂b
W

ψ

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))
− J

σ(b)
(a, b)× a

W
ψ1

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))

+
σ′(b)

σ(b)

W
ψ2

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))
− 1

i2π
(p+ qb− σ′(b)

σ(b)
).

(6.2.2.10)

Since φ′(b) is real, i.e., the real part of 1
i2π

(p+ qb− σ′(b)
σ(b)

) is zero, we have

φ′(b) = Re

{ ∂
∂b
W

ψ

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))
− J

σ(b)
(a, b)× a W

ψ1

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))

+
σ′(b)

σ(b)

W
ψ2

x (a, b;σ(b))

i2πW ψ

x (a, b;σ(b))

}
.

(6.2.2.11)

Eventually, for a general signal x(t), the second-order phase transformation of x(t)
is defined by
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Ω2nd

x (a, b;σ(b)) =



Re

{
∂
∂b
W
ψ
x (a,b;σ(b))

i2πW
ψ
x (a,b;σ(b))

− J
σ(b)

(a, b)× a W
ψ1
x (a,b;σ(b))

i2πW
ψ
x (a,b;σ(b))

+σ′(b)
σ(b)

W
ψ2
x (a,b;σ(b))

i2πW
ψ
x (a,b;σ(b))

}
;

when W
ψ

x (a, b;σ(b)) 6= 0 and ∂
∂a

(
a W

ψ1
x (a,b;σ(b))

W
ψ
x (a,b;σ(b))

)
6= 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Re

{
∂
∂b
W
ψ
x (a,b;σ(b))

i2πW
ψ
x (a,b;σ(b))

+ σ′(b)
σ(b)

W
ψ2
x (a,b;σ(b))

i2πW
ψ
x (a,b;σ(b))

}
;

when W
ψ

x (a, b;σ(b)) 6= 0 and ∂
∂a

(
a W

ψ1
x (a,b;σ(b))

W
ψ
x (a,b;σ(b))

)
= 0.

(6.2.2.12)

Therefore, with this phase transformation Ω2nd

x (a, b;σ(b)), the AWSST of x(t) is
defined by

S
ACWT

x (ξ, b;σ(b)) =

∫
I

W
ψ

x (a, b;σ(b)) δ(Ω2nd

x (a, b;σ(b))− ξ) da
a
, (6.2.2.13)

where ξ is the frequency variable and I = {a ∈ R+ : W
ψ

x (a, b;σ(b)) 6= 0}. The
reconstruction formulas for a mono-component signal x(t) or multicomponent sig-
nal x(t) =

∑
k xk(t) from the second-order AWSST are similar to those with

Ω1
st

x (a, b;σ(b)) for AWSST.

The rest of this chapter is left to propose a new work that aims to adapt
the concept of the time-varying parameter, σ = σ(t), to the time-FrFD-frequency
representation; namely, the adaptive α-order FrCWT (AFrCWT), and then in-
troducing new SST’s based on the AFrCWT for the purpose of enhancing the
concentration of TF representations.

6.3 Adaptive FrCWT

We consider the adaptive α-order fractional family of wavelets of the form

ψ
σ(b);α,a,b

(t) = e−iπ(t2−b2−( t−b
a

)2) cot(α) ψ
σ(b);a,b

(t), (6.3.1)

where ψ
σ(b);a,b

(t) = 1
a
ψ
σ(b)

( t−b
a

). Then we define the α-order FrCWT of a signal
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x(t) with a time-varying parameter as follows

Wα,ψ
x (a, b;σ(b)) = 〈x(t), ψ

σ(b);α,a,b
(t)〉 =

∫ ∞
−∞

x(t) ψ
σ(b);α,a,b

(t) dt, (6.3.2)

and, by using Parseval identity defined in (4.1.4), the following proposition presents
the definition of the α-order AFrCWT in the FrFD where its proof is similar to
the proof of (5.2.9) and given in Appendix for self-containedness.

Proposition 6.3.1. Let Wα,ψ
x (a, b;σ(b)) be the time-varying α-order FrCWT of a

signal x(t) defined in (6.3.2). Then, for Aα =
√

2π/(1 + i cot(α)), we define the
α-order AFrCWT in the FrFD by

W
α,ψ

x (a, b;σ(b)) = Aα ×
∫ ∞
−∞

eiπ(aξ)2 cot(α) Xα(ξ) Ψ
σ(b);α

(aξ)K−α(ξ, b) dξ. (6.3.3)

Now from equations (6.3.1) and (6.3.2), the AFrCWT becomes

W
α,ψ

x (a, b;σ(b)) =

∫ ∞
−∞

x(t) eiπ
(
t2−b2−( t−b

a
)2
)

cot(α) ψ
σ(b);a,b

(t) dt, (6.3.4)

or in the simplified form as

W
α,ψ

x (a, b;σ(b)) = W
ψ

x̃
(a, b;σ(b)) e−iπ(a2+1) b

2

a2 cot(α), (6.3.5)

where x̃(t) is defined in (4.2.6). The following proposition shows that the original
signal x(b) can be retrieved back from the α-order AFrCWT with integral involving
only the scale variable a.

Proposition 6.3.2. Let W
α,ψ

x (a, b;σ(b)) be the time-varying α-order FrCWT of a
signal x(t) defined in (6.3.3). Then x(t) can be retrieved back by

x(b) = c
−1

Ψ
σ(b);α

(b)

∫ ∞
0

W
α,ψ

x (a, b;σ(b))
da

a
, (6.3.6)

where c
Ψ
σ(b);α

(b) 6= 0 is defined by

c
Ψ
σ(b);α

(b) = Aα ×
∫ ∞

0

eiπη
2 cot(α) Ψ

σ(b);α
(η)

dη

η
. (6.3.7)

Obtaining equation (6.3.6) is straightforward in the sense that it can directly
be followed the way obtaining equation (4.2.9) for the conventional FrCWT. For
self-containedness, the proof of this proposition is provided in Appendix. Now,
equation (6.3.4) can be rewritten as follows

W
α,ψ

x (a, b;σ(b)) = e−iπ(a2+1) b
2

a2 cot(α)

∫ ∞
−∞

x̃(t)ψ
σ(b);1

(t) dt, (6.3.8)
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where x̃(t) = x(t) eiπ(a
2−1

a2 )cot(α) t2 and ψ
σ(b);1

(t) = ψ
σ(b);a,b

(t) e−i2π
b
a2 cot(α) t.

Thus, using Parseval identity of FT helps to write equation (6.3.8) as

W
α,ψ

x (a, b;σ(b)) = e−iπ(a2+1) b
2

a2 cot(α)

∫ ∞
−∞

̂̃x(ξ) ψ̂
σ(b);1

(ξ) dξ, (6.3.9)

where FT of ψ
σ(b);1

(t), ψ̂
σ(b);1

(ξ), is given by

ψ̂
σ(b);1

(ξ) = e−i2π( b
2

a2 cot(α)+bξ) ψ̂
σ(b)

(
b

a
cot(α) + aξ), (6.3.10)

and then equation (6.3.9) in its definitive form becomes

W
α,ψ

x (a, b;σ(b)) = e−iπ(a2−1) b
2

a2 cot(α)

∫ ∞
−∞

̂̃x(ξ) ψ̂
σ(b)

( b
a

cot(α) + aξ
)
ei2πbξdξ.

(6.3.11)
Note that if we set α = π

2
or 90

o
, then the AFrCWT,W

α,ψ

x (a, b;σ(b)), is the ACWT,

W
ψ

x (a, b;σ(b)). Also, if we assume ψ
σ(b)

to be as defined in (6.1.9) or (6.1.10),

then ψ̂
σ(b)

( b
a

cot(α) + aξ) = ϑ̂
(
σ(b)(µ− aξ − b

a
cot(α))

)
and thus the associated

AFrCWT W
α,ψ

x (a, b;σ(b)) is defined by

W
α,ψ

x (a, b;σ(b)) =

∫ ∞
−∞

x(at+ b) eiπ
(

(a2−1) t2+2ab t
)

cot(α) 1

σ(b)
ϑ(

t

σ(b)
) e−i2π µt dt.

(6.3.12)

6.4 Adaptive FrCWT-based SST

6.4.1 First-Order AFrWSST

We again consider the chirp signal x(t) = ei2πct with a constant frequency c > 0
as an example to derive the first-order phase transformation. By using equation
(6.3.12), we have

W
α,ψ

x (a, b;σ(b)) =

∫ ∞
−∞

ei2π
(

(a2−1) cot(α) t
2

2
+(ac+ab cot(α)) t+cb

)
1

σ(b)
ϑ(

t

σ(b)
) e−i2π µt dt,

(6.4.1.1)
Taking the first-order partial derivative of this above equation with respect to b
will give us that

∂

∂b
W

α,ψ

x (a, b;σ(b)) = (i2π c− σ′(b)

σ(b)
) W

α,ψ

x (a, b;σ(b))

+ i2π a σ(b) cot(α) W
α,ψ1

x (a, b;σ(b))

− σ′(b)

σ(b)
W

α,ψ2

x (a, b;σ(b)),

(6.4.1.2)
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where ψ1(t) and ψ2(t) are defined in (6.2.2.3) and (6.2.1.3) respectively, and

W
α,ψ1

x (a, b;σ(b)) and W
α,ψ2

x (a, b;σ(b)) are defined by

W
α,ψ1

x (a, b;σ(b)) =

∫ ∞
−∞

x(at+ b) eiπ
(

(a2−1) t2+2ab t
)

cot(α) t

σ2(b)
ϑ(

t

σ(b)
) e−i2π µt dt,

and

W
α,ψ2

x (a, b;σ(b)) =

∫ ∞
−∞

x(at+ b) eiπ
(

(a2−1) t2+2ab t) cot(α) t

σ2(b)
ϑ′(

t

σ(b)
) e−i2π µt dt.

Thus, if W
α,ψ

x (a, b;σ(b)) 6= 0, the exact IF, c, of x(t) can be obtained by

c =
∂
∂b
W

α,ψ

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))
+
σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

− a σ(b) cot(α)
W

α,ψ1

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
+

1

i2π

σ′(b)

σ(b)
.

(6.4.1.3)

From that, for a general signal x(t) ∈ L2(R), the first-order phase transformation
of x(t) at (a, b) on which W

α,ψ

x (a, b;σ(b)) 6= 0 is given to be the real part of the
quantity on the right-hand side of (6.4.1.3)

Ω1st

x (a, b;σ(b)) = Re

{ ∂
∂b
W

α,ψ

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

+
σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

− a σ(b) cot(α)
W

α,ψ1

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

} (6.4.1.4)

Thus the synchrosqueezed AFrCWT (AFrWSST), denoted S
AFrCWT

x (ξ, b;σ(b)), on
the time-FrFD-frequency plane is defined by

S
AFrCWT

x (ξ, b;σ(b)) =

∫
I

W
α,ψ

x (a, b;σ(b)) δ(Ω1st

x (a, b;σ(b))− ξ) da
a
, (6.4.1.5)

where ξ is the frequency variable and I = {a ∈ R+ : W
ψ

x (a, b;σ(b)) 6= 0}. Now, for
an analytic mono-component signal x(t) ∈ L2(R), by (6.3.6), it can be retrieved
back from the AFrWSST as

x(b) = c
−1

Ψ
σ(b);α

(b)

∫ ∞
0

S
AFrCWT

x (ξ, b;σ(b)) dξ, (6.4.1.6)

and for a real-valued mono-component signal x(t) ∈ L2(R), it can be retrieved
back as

x(b) = Re

(
2 c
−1

Ψ
σ(b);α

(b)

∫ ∞
0

S
AFrCWT

x (ξ, b;σ(b)) dξ

)
, (6.4.1.7)
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where c
Ψ
σ(b);α

(b) is defined by (6.3.7). In addition, for multicomponent signal x(t)

in (2.2.2.3), the kth component x
k
(b) can be retrieved back from the AFrWSST

for certain Γ > 0 as follows

x
k
(b) ≈ Re

(
2 c
−1

Ψ
σ(b);α

(b)

∫
|ξ−φ′

k
(b)|<Γ

S
AFrCWT

x (ξ, b;σ(b)) dξ

)
. (6.4.1.8)

6.4.2 Second-Order AFrWSST

For LFM signal x(t) defined in (3.2.2.1) and by taking ∂
∂b

to both sides of equation
(6.3.12), we will have

∂

∂b
W

α,ψ

x (a, b;σ(b)) = (p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)
) W

α,ψ

x (a, b;σ(b))

+
(
q + i2π(r + cot(α))

)
a σ(b) W

α,ψ1

x (a, b;σ(b))

− σ′(b)

σ(b)
W

α,ψ2

x (a, b;σ(b)).

(6.4.2.1)

Thus at (a, b) on which W
α,ψ

x (a, b;σ(b)) 6= 0 we have

∂
∂b
W

α,ψ

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
= p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)

+
(
q + i2π(r + cot(α))

)
a σ(b)

W
α,ψ1

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

− σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
,

(6.4.2.2)

and then by taking ∂
∂a

to both sides of this above equation (6.4.2.2) we get

∂

∂a

( ∂
∂b
W

α,ψ

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

)
=
(
q + i2π(r + cot(α))

)
σ(b)

∂

∂a

(
a
W

α,ψ1

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

)
− σ′(b)

σ(b)

∂

∂a

(
W

α,ψ2

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

)
.

(6.4.2.3)

Thus, if ∂
∂a

(
a W

α,ψ1
x (a,b;σ(b))

W
α,ψ
x (a,b;σ(b))

)
6= 0, then

(
q + i2π(r + cot(α))

)
σ(b) = J

α

σ(b)
(a, b), (6.4.2.4)
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where J
α

σ(b)
(a, b) is defined by

J
α

σ(b)
(a, b) =

1

∂
∂a

(
a W

α,ψ1
x (a,b;σ(b))

W
α,ψ
x (a,b;σ(b))

)×[ ∂
∂a

( ∂
∂b
W

α,ψ

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

)
+
σ′(b)

σ(b)

∂

∂a

(
W

α,ψ2

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

)]
.

(6.4.2.5)
Now by substituting (6.4.2.4) into (6.4.2.2), we have

∂
∂b
W

α,ψ

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
= p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)

+ J
α

σ(b)
(a, b)× a

W
α,ψ1

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

− σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
.

(6.4.2.6)

Therefore, the exact IF, φ′(b) = c + rb, of the linear frequency modulation x(b)
given in (3.2.2.1) is defined by

φ′(b) =
∂
∂b
W

α,ψ

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))
− Jα

σ(b)
(a, b)× a

W
α,ψ1

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

+
σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))
− 1

i2π
(p+ qb− σ′(b)

σ(b)
).

(6.4.2.7)

Since φ′(b) is real, i.e., the real part of 1
i2π

(p+ qb− σ′(b)
σ(b)

) is zero, then we have

φ′(b) = Re

{ ∂
∂b
W

α,ψ

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

− Jα
σ(b)

(a, b)× a
W

α,ψ1

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

+
σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

}
.

(6.4.2.8)

Then, for a general signal x(t), the phase transformation is defined by
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Ω2nd

x (a, b;σ(b)) =



Re

{
∂
∂b
W
α,ψ
x (a,b;σ(b))

i2πW
α,ψ
x (a,b;σ(b))

− Jα
σ(b)

(a, b)× a W
α,ψ1
x (a,b;σ(b))

i2πW
α,ψ
x (a,b;σ(b))

+σ′(b)
σ(b)

W
α,ψ2
x (a,b;σ(b))

i2πW
α,ψ
x (a,b;σ(b))

}
;

when W
ψ

x (a, b;σ(b)) 6= 0 and ∂
∂a

(
a W

α,ψ1
x (a,b;σ(b))

W
α,ψ
x (a,b;σ(b))

)
6= 0;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Re

{
∂
∂b
W
α,ψ
x (a,b;σ(b))

i2πW
α,ψ
x (a,b;σ(b))

− a σ(b) cot(α) W
α,ψ1
x (a,b;σ(b))

W
α,ψ
x (a,b;σ(b))

+σ′(b)
σ(b)

W
α,ψ2
x (a,b;σ(b))

i2πW
α,ψ
x (a,b;σ(b))

}
;

when W
ψ

x (a, b;σ(b)) 6= 0 and ∂
∂a

(
a W

α,ψ1
x (a,b;σ(b))

W
α,ψ
x (a,b;σ(b))

)
= 0.

(6.4.2.9)

Based on this derivation, we now provide the following theorem where its proof is
given in Appendix.

Theorem 6.4.1. If x(t) is an LFM signal given by (4.3.2.1), then at (a,b) on

which Wα,ψ
x (a, b;σ(b)) 6= 0 and ∂

∂a

(
a W

α,ψ1
x (a,b;σ(b))

W
α,ψ
x (a,b;σ(b))

)
6= 0, Ω2

nd

x (a, b;σ(b)) defined by

(6.4.2.9) is the IF of x(t); namely, Ω2
nd

x (a, b;σ(b)) = φ′(b) = c+ rb.

Lastly, with this phase transformation Ω2
nd

x (a, b;σ(b)) defined above in (6.4.2.9),
the second-order AFrWSST, S

AFrCWT

x (ξ, b;σ(b)), of a signal x(t) ∈ L2(R) is defined
as in (6.4.1.5)

S
AFrCWT

x (ξ, b;σ(b)) =

∫
I

W
α,ψ

x (a, b;σ(b)) δ(Ω2nd

x (a, b;σ(b))− ξ) da
a
, (6.4.2.10)

where ξ is the frequency variable and I = {a ∈ R+ : W
α,ψ

x (a, b;σ(b)) 6= 0}. For
reconstructing a mono-component signal x(t) or a multicomponent signal x(t) =∑

k xk(t) from the second-order AFrWSST, it can similarly be defined as that with
Ω1st

x (a, b;σ(b)) for AFrWSST.
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CHAPTER 7

Conclusion and Future Work
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In this chapter, we make the primary conclusion of this dissertation and de-
scribe our future research problems. First, a formula with integral involving only
the scale variable is established to reconstruct the original signal from the FrCWT.
Then, two phase transformations, that are associated with the first and the second
order partial derivatives of the FrCWT of a time-varying signal, are derived. Based
on those transformations, we introduce the fractional synchrosqueezed wavelet
transform (FrWSST) that transforms the FrCWT value from a time-scale point
to a quantity on the time-FrFD-frequency plane.

Based on IFE-CWT, we introduce the IFE synchrosqueezing transform (IFE-
WSST) with the first two orders of the phase transformation for further enhancing
the concentration and reducing the diffusion for the curved IF profile. We also pro-
pose a time-FrFD-frequency representation with satisfactory energy concentration
for both monocomponent signals and multicomponent signals; namely, the instan-
taneous frequency-embedded FrCWT (IFE-FrCWT) and then the corresponding
SST (IFE-FrWSST). Lastly, we propose the adaptive FrCWT (AFrCWT) and the
corresponding adaptive SST (AFrWSST) with a time-varying parameter σ = σ(t)
to close this dissertation.

There are several research problems related to this topic. Other than the prob-
lems we studied in this dissertation, we have the following list of problems for our
future research:

1. (Numerical experiments: Including real data experiments)

Performing some experimental studies is to show the potential outperfor-
mance; obtained from time-frequency representations in the FrFD, in the
estimation accuracy of the instantaneous frequency and the improvement in
the energy concentration of the time-frequency distribution for multicompo-
nent strong frequency modulation signals.

2. (Instantaneous frequency-embedded ACWT/AFrCWT)

Study TF and TFrF representations with satisfactory energy concentration
that involve both variables of adaptive CWT (ACWT) and adaptive FrCWT
(AFrCWT); namely, the instantaneous frequency-embedded ACWT/AFrCWT
(IFE-AFrCWT/IFE-AFrCWT).

3. (STFrFT-based synchrosqueezing transform)

Extend the idea of SST in the time-FrFD-frequency plane to the short-
time fractional Fourier transform (STFrFT), namely; the STFrFT-based
synchrosqueezing transform (FrFSST).

4. (Instantaneous frequency-embedded STFrFT)
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Generate a time-FrFD-frequency representation with satisfactory energy con-
centration that involves both variables of STFrFT; namely, the instantaneous
frequency-embedded STFrFT (IFE-STFrFT).

5. (STFrFT with a time-varying parameter)

Study the time-FrFD-frequency analysis by adapting time-varying window
width to the STFrFT, namely; the adaptive STFrFT (ASTFrFT).

6. (Instantaneous frequency-embedded ASTFT/ASTFrFT)

Study TF and TFrF representations with satisfactory energy concentra-
tion that involve both variables of adaptive STFT (ASTFT) and adap-
tive STFrFT (ASTFrFT); namely, the instantaneous frequency-embedded
ASTFT/ASTFrFT (IFE-ASTFTT/IFE-ASTFrFTT).

7. Present several Applications by applying these time-FrFD-frequency repre-
sentations to multicomponent signals that are commonly seen in nature and
engineering problems, where the frequencies of these signals usually change
with the time.
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Appendix

Proof of Theorem 4.3.1. For x(t) given by (4.3.2.1) and from equations
(4.3.2.2); x′(t) =

(
p+ qt+ i2π(c+ rt)

)
x(t), and (4.3.1.1), we have

∂

∂b
W

α,ψ

x (a, b) =

∫ ∞
−∞

x′(at+ b) eiπ
(

(a2−1) t2+2ab t
)

cot(α) ψ(t) dt

+ i2π a cot(α)×
∫ ∞
−∞

x(at+ b) eiπ
(

(a2−1) t2+2ab t
)

cot(α) t ψ(t) dt

=
(
(p+ i2π c) + (q + i2πr) b

)
×∫ ∞

−∞
x(at+ b) eiπ

(
(a2−1) t2+2ab t

)
cot(α) ψ(t) dt

+ a
(
q + i2π(r + cot(α))

)
×∫ ∞

−∞
x(at+ b) eiπ

(
(a2−1) t2+2ab t

)
cot(α) t ψ(t) dt

=
(
(p+ i2πc) + (q + i2πr) b

)
W

α,ψ

x (a, b)

+ a
(
q + i2π(r + cot(α))

)
W

α,T ψ

x (a, b).

Thus if W
α,ψ

x (a, b) 6= 0, we have

∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)
= p+ i2πc+(q+ i2πr) b + a

(
q+ i2π(r+cot(α))

) W α,T ψ
x (a, b)

W α,ψ

x (a, b)
. (†)

Taking the first-order partial derivative ∂
∂a

to both sides of this above equation (†)
leads to have

∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)
=
(
q + i2π(r + cot(α))

) ∂

∂a

(
a
W

α,T ψ
x (a, b)

W α,ψ

x (a, b)

)
.

Therefore, if in addition, ∂
∂a

(
a W

α,T ψ
x (a,b)

W
α,ψ
x (a,b)

)
6= 0, then

q + i2π(r + cot(α)) =
1

∂
∂a

(
a W

α,T ψ
x (a,b)

W
α,ψ
x (a,b)

) × ∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)
.

Back to (†), we have

∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)
= p+ qb+ i2π(c+ rb)

+ a
W

α,T ψ
x (a, b)

W α,ψ

x (a, b)× ∂
∂a

(
a W

α,T ψ
x (a,b)

W
α,ψ
x (a,b)

) × ∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)
.
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Hence,

φ′(b) = c+ rb =
∂
∂b
W

α,ψ

x (a, b)

i2πW α,ψ

x (a, b)
− 1

i2π
(p+ qb)

−

(
a

W
α,T ψ
x (a, b)

W α,ψ

x (a, b)× ∂
∂a

(
a W

α,T ψ
x (a,b)

W
α,ψ
x (a,b)

)
)
× ∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)
.

Since φ′(b) is real, we conclude that

φ′(b) = c+ rb = Re

{
∂
∂b
W

α,ψ

x (a, b)

i2πW α,ψ

x (a, b)
−

(
a

W
α,T ψ
x (a, b)

W α,ψ

x (a, b)× ∂
∂a

(
a W

α,T ψ
x (a,b)

W
α,ψ
x (a,b)

)
)
×

∂

∂a

(
∂
∂b
W

α,ψ

x (a, b)

W α,ψ

x (a, b)

)}
.

Therefore for an LFM signal x(t) given by (4.3.2.1), at (a, b) on which W
α,ψ

x (a, b) 6=
0 and ∂

∂a

(
a W

α,T ψ
x (a,b)

W
α,ψ
x (a,b)

)
6= 0, the phase transformation Ω2

nd

x (a, b) defined by (4.3.2.9)

is the exact IF of x(t); namely, Ω2
nd

x (a, b) = φ′(b) = c+rb. This completes the proof
of Theorem 4.3.1. �

Proof of Theorem 5.1.1. For x(t) given by (4.3.2.1) and from equations
(4.3.2.2); x′(t) =

(
p+ qt+ i2π(c+ rt)

)
x(t), and (5.1.1.1), we have

∂

∂b
W

E,ψ

x (a, b) =

∫ ∞
−∞

x′(at+ b) e−i2π
(
ϕ(at+b)−ϕ(b)−(ϕ′(b)+ξ0) at−ξ0b

)
ψ(t) dt

+

∫ ∞
−∞

(
− i2πϕ′(at+ b) + i2πϕ′′(b) at+ i2π(ϕ′(b) + ξ0)

)
×

x(at+ b) e−i2π
(
ϕ(at+b)−ϕ(b)−(ϕ′(b)+ξ0) at−ξ0b

)
ψ(t) dt.

=

∫ ∞
−∞

(
p+ qb+ i2π(c+ rb) + (q + i2π r) at

)
×

x(at+ b) e−i2π
(
ϕ(at+b)−ϕ(b)−(ϕ′(b)+ξ0) at−ξ0b

)
ψ(t) dt

+

∫ ∞
−∞

(
− i2πϕ′(at+ b) + i2πϕ′′(b) at+ i2π(ϕ′(b) + ξ0)

)
×

x(at+ b) e−i2π
(
ϕ(at+b)−ϕ(b)−(ϕ′(b)+ξ0) at−ξ0b

)
ψ(t) dt

which can be reformulated as follows
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∂

∂b
W

E,ψ

x (a, b) =
(
p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

)
×∫ ∞

−∞
x(at+ b) e−i2π

(
ϕ(at+b)−ϕ(b)−(ϕ′(b)+ξ0) at−ξ0b

)
ψ(t) dt

+
(
q + i2π(r + ϕ′′(b))

)
a×∫ ∞

−∞
x(at+ b) e−i2π

(
ϕ(at+b)−ϕ(b)−(ϕ′(b)+ξ0) at−ξ0b

)
ψ(t) dt

− i2π
∫ ∞
−∞

x(at+ b)ϕ′(at+ b) e−i2π
(
ϕ(at+b)−ϕ(b)−(ϕ′(b)+ξ0) at−ξ0b

)
ψ(t) dt

=
(
p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

)
W

E,ψ

x (a, b)

+
(
q + i2π(r + ϕ′′(b))

)
aW

E,T ψ

x (a, b)− i2πW E,ψ

xϕ′ (a, b).

Thus if W
E,ψ

x (a, b) 6= 0, we have

∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)
= p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

+ (q + i2π(r + ϕ′′(b))) a
W

E,T ψ
x (a, b)

W E,ψ

x (a, b)
− i2π

W
E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)
. (‡)

By taking the first-order partial derivative ∂
∂a

to both sides of (‡) , we have

∂

∂a

( ∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)

)
=
(
q + i2π(r + ϕ′′(b))

) ∂
∂a

(
a
W

E,T ψ
x (a, b)

W E,ψ

x (a, b)

)
− i2π ∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)
.

Therefore, if in addition, ∂
∂a

(
a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)

)
6= 0, then

q + i2π(r + ϕ′′(b)) =
1

∂
∂a

(
a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)

) × [ ∂
∂a

( ∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)

)
+ i2π

∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)]
.

Back to (‡), we have

∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)
= p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb) +

(
a

W
E,T ψ
x (a, b)

W E,ψ

x (a, b)× ∂
∂a

(
a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)

)
×
[
∂

∂a

( ∂
∂b
W

E,ψ

x (a, b)

W E,ψ

x (a, b)

)
+ i2π

∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)])
− i2π

W
E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)
.
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Hence,

φ′(b) = c+ rb =
∂
∂b
W

E,ψ

x (a, b)

i2π W E,ψ

x (a, b)
+
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)
−

([
∂

∂a

( ∂
∂b
W

E,ψ

x (a, b)

i2πW E,ψ

x (a, b)

)
+

∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)]

× a W
E,T ψ
x (a, b)

W E,ψ

x (a, b)× ∂
∂a

(
a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)

)
)
− ϕ′(b)− ξ0 −

1

i2π
(p+ qb).

Since φ′(b) is real, we conclude that

φ′(b) = c+ rb = Re

{ ∂
∂b
W

E,ψ

x (a, b)

i2π W E,ψ

x (a, b)
+
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)
− a W

E,T ψ
x (a, b)

W E,ψ

x (a, b)× ∂
∂a

(
a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)

)×
[
∂

∂a

( ∂
∂b
W

E,ψ

x (a, b)

i2πW E,ψ

x (a, b)

)
+

∂

∂a

(
W

E,ψ

xϕ′ (a, b)

W E,ψ

x (a, b)

)]}
− ϕ′(b)− ξ0.

Therefore for an LFM signal x(t) given by (4.3.2.1), at (a, b) on which W
E,ψ

x (a, b) 6=
0 and ∂

∂a

(
a W

E,T ψ
x (a,b)

W
E,ψ
x (a,b)

)
6= 0, the second order phase transformation Ω2

nd

x (a, b) de-

fined by (5.1.2.7) is the exact IF of x(t); namely, Ω2
nd

x (a, b) = φ′(b) = c+ rb. This
completes the proof of Theorem 5.1.1. �

Proof of Theorem 5.3.1. For x(t) given by (4.3.2.1) and from equations
(4.3.2.2); x′(t) =

(
p+ qt+ i2π(c+ rt)

)
x(t), and (5.3.1.1), we have

∂

∂b
W

α,E,ψ

x (a, b) =

∫ ∞
−∞

(
ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at+iπ(a2−1) cot(α) t2

)
×

x′(at+ b)ψ(t) dt

+

∫ ∞
−∞

(
i2π(ϕ′(b) + ξ0)− i2πϕ′(at+ b) + i2π(cot(α) + ϕ′′(b)) at

)
× x(at+ b)

×
(
ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at+iπ(a2−1) cot(α) t2

)
ψ(t) dt

=

∫ ∞
−∞

(
ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at+iπ(a2−1) cot(α) t2

)
×(

p+ q(at+ b) + i2π(c+ r(at+ b))
)
× x(at+ b)ψ(t) dt

+

∫ ∞
−∞

(
i2π(ϕ′(b) + ξ0)− i2πϕ′(at+ b) + i2π(cot(α) + ϕ′′(b)) at

)
× x(at+ b)

×
(
ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at+iπ(a2−1) cot(α) t2

)
ψ(t) dt

which can be reformulated as follows
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∂

∂b
W

α,E,ψ

x (a, b) =
(
p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

)
×∫ ∞

−∞

(
ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at+iπ(a2−1) cot(α) t2

)
×

x(at+ b)ψ(t) dt

− i2π
∫ ∞
−∞

(
ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at+iπ(a2−1) cot(α) t2

)
×

x(at+ b)ϕ′(at+ b)ψ(t) dt

+
(
q + i2π(r + cot(α) + ϕ′′(b))

)
a×∫ ∞

−∞

(
ei2π(ϕ(b)+ξ0b)−i2πϕ(at+b)+i2π(ξ0+b cot(α)+ϕ′(b)) at+iπ(a2−1) cot(α) t2

)
×

x(at+ b) t ψ(t) dt

=
(
p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

)
W

α,E,ψ

x (a, b)− i2πW α,E,ψ

xϕ′ (a, b)

+
(
q + i2π(r + cot(α) + ϕ′′(b))

)
aW

α,E,T ψ

x (a, b).

Thus if W
α,E,ψ

x (a, b) 6= 0, we have

∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)
= p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)− i2π

W
α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

+
(
q + i2π(r + cot(α) + ϕ′′(b))

)
a
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)
. (††)

By taking the first-order partial derivative ∂
∂a

to both sides of (††) , we have

∂

∂a

( ∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)

)
= −i2π ∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)
+
(
q + i2π(r + cot(α) + ϕ′′(b))

) ∂
∂a

(
a
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)

)
.

Therefore, if in addition, ∂
∂a

(
a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

)
6= 0, then

q + i2π(r + cot(α) + ϕ′′(b)) =
1

∂
∂a

(
a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

) × [ ∂∂a
( ∂

∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)

)

+ i2π
∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)]
.
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Back to (††), we have

∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)
= p+ qb+ i2π(ϕ′(b) + ξ0 + c+ rb)

+

([
∂

∂a

( ∂
∂b
W

α,E,ψ

x (a, b)

W α,E,ψ

x (a, b)

)
+ i2π

∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)]
×

a
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)× ∂
∂a

(
a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

)
)

+ i2π
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

Hence

φ′(b) = c+ rb =
∂
∂b
W

α,E,ψ

x (a, b)

i2πW α,E,ψ

x (a, b)
+
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

−

([
∂

∂a

( ∂
∂b
W

α,E,ψ

x (a, b)

i2πW α,E,ψ

x (a, b)

)
+

∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)]
×

a
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)× ∂
∂a

(
a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

)
)
− ϕ′(b)− ξ0 −

1

i2π
(p+ qb).

Since φ′(b) is real, we conclude that

φ′(b) = c+ rb = Re

{
∂
∂b
W

α,E,ψ

x (a, b)

i2πW α,E,ψ

x (a, b)
+
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

−

([
∂

∂a

( ∂
∂b
W

α,E,ψ

x (a, b)

i2πW α,E,ψ

x (a, b)

)
+

∂

∂a

(
W

α,E,ψ

xϕ′ (a, b)

W α,E,ψ

x (a, b)

)]
×

a
W

α,E,T ψ
x (a, b)

W α,E,ψ

x (a, b)× ∂
∂a

(
a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

)
)}
− ϕ′(b)− ξ0.

Therefore for an LFM signal x(t) given by (4.3.2.1), at (a, b) on whichW
α,E,ψ

x (a, b) 6=
0 and ∂

∂a

(
a W

α,E,T ψ
x (a,b)

W
α,E,ψ
x (a,b)

)
6= 0, the phase transformation defined by (5.3.2.10) is the

exact IF of x(t); namely, Ω2
nd

x (a, b) = φ′(b) = c + rb. This completes the proof of
Theorem 5.3.1. �

Proof of Proposition 6.3.1. By taking the α-order FrFT on both sides of
equation (6.3.1), we have
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Ψ
σ(b);α,a,b

(ξ) =

∫ ∞
−∞

ψ
σ(b);α,a,b

(t)Kα(t, ξ) dt

=

∫ ∞
−∞

e−iπ(t2−b2−( t−b
a

)2) cot(α) ψ
σ(b);a,b

(t) Bα e
iπ(t2+ξ2) cot(α)−itξ csc(α) dt

=

∫ ∞
−∞

1

a
ψ
σ(b)

(t− b
a

)
Bα e

iπ(b2+ξ2) cot(α)−itξ csc(α) eiπ( t−b
a

)2 cot(α) dt,

or it can be written as follows

Ψ
σ(b);α,a,b

(ξ) =
1

Bα

∫ ∞
−∞

(
1

a
ψ
σ(b)

(t− b
a

)
Bα e

iπ(b2+ξ2) cot(α)−i
(
t−b
a

+ b
a

)
aξ csc(α)

Bα e
iπ
(

( t−b
a

)2+(aξ)2−(aξ)2
)

cot(α)

)
dt

=
e−iπ(aξ)2 cot(α)

Bα

∫ ∞
−∞

(
1

a
ψ
σ(b)

(t− b
a

)
Bα e

iπ
(

( t−b
a

)2+(aξ)2
)

cot(α)−i( t−b
a

) aξ csc(α)

Bα e
iπ(b2+ξ2) cot(α)−ibξ csc(α)

)
dt

=
e−iπ(aξ)2 cot(α)

Bα

∫ ∞
−∞

ψ
σ(b)

(t− b
a

)
Bα e

iπ
(

( t−b
a

)2+(aξ)2
)

cot(α)−i( t−b
a

) aξ csc(α)

Kα(b, ξ) d
(t− b

a

)
=

1

Bα

Kα(b, ξ) e−iπ(aξ)2 cot(α)

∫ ∞
−∞

ψ
σ(b)

(t) Bα e
iπ
(
t2+(aξ)2

)
cot(α)−it aξ csc(α) dt

=
1

Bα

Kα(b, ξ) e−iπ(aξ)2 cot(α)

∫ ∞
−∞

ψ
σ(b)

(t) Kα(t, aξ) dt

=
1

Bα

Kα(b, ξ) Ψ
σ(b);α

(aξ) e−iπ(aξ)2 cot(α). (F)

From the Parseval identity of the FrFT defined in (4.1.4) and then substituting
(F) into (6.3.2), we have

Wα,ψ
x (a, b;σ(b)) =< Xα(ξ),

1

Bα

Kα(b, ξ) Ψ
σ(b);α

(aξ) e−iπ(aξ)2 cot(α) >

=
1

Bα

×
∫ ∞
−∞

eiπ(aξ)2 cot(α) Xα(ξ) Ψ
σ(b);α

(aξ)Kα(b, ξ) dξ

= Aα ×
∫ ∞
−∞

eiπ(aξ)2 cot(α) Xα(ξ) Ψ
σ(b);α

(aξ)K−α(b, ξ) dξ.

This proves (6.3.3). �
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Proof of Proposition 6.3.2. Integrating both sides of equation (6.3.3) with
integral involving only the scale variable a leads to have∫ ∞

0

W
α,ψ

x (a, b;σ(b))
da

a
= Aα ×

∫ ∞
0

∫ ∞
−∞

eiπ(aξ)2 cot(α) Xα(ξ) Ψσ(b);α(aξ) K−α(ξ, b) dξ
da

a

= Aα ×
∫ ∞
−∞

Xα(ξ)K−α(ξ, b)

∫ ∞
0

eiπ(aξ)2 cot(α) Ψσ(b);α(aξ)
da

a
dξ

=

∫ ∞
−∞

Xα(ξ)Kα(b, ξ)

(
Aα ×

∫ ∞
0

eiπη
2 cot(α) Ψσ(b);α(η)

dη

η

)
dξ

= c
Ψσ(b);α

(b)×
∫ ∞
−∞

Xα(ξ)Kα(b, ξ) dξ

= c
Ψσ(b);α

(b) x(b),

which shows (6.3.6) as it is desired. �

Proof of Theorem 6.4.1. For x(t) given by (4.3.2.1) and from equations
(4.3.2.2); x′(t) =

(
p+ qt+ i2π(c+ rt)

)
x(t), and (6.3.12), we have

∂

∂b
W

α,ψ

x (a, b;σ(b)) =

∫ ∞
−∞

x′(at+ b) eiπ
(

(a2−1) t2+2ab t
)

cot(α) 1

σ(b)
ϑ(

t

σ(b)
) e−i2π µt dt

+

∫ ∞
−∞

x(at+ b)×

(
i2πa cot(α) t eiπ

(
(a2−1) t2+2ab t

)
cot(α) 1

σ(b)
ϑ(

t

σ(b)
) e−i2π µt

+ eiπ
(

(a2−1) t2+2ab t
)

cot(α)
(
− σ′(b)

σ2(b)
ϑ(

t

σ(b)
)− σ′(b)

σ3(b)
t ϑ′(

t

σ(b)
)
)
e−i2π µt

)
dt

=
(
p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)

)
×∫ ∞

−∞
x(at+ b) eiπ

(
(a2−1) t2+2ab t

)
cot(α) 1

σ(b)
ϑ(

t

σ(b)
) e−i2π µt dt

+ a (q + i2π(r + cot(α)))×∫ ∞
−∞

x(at+ b) eiπ
(

(a2−1) t2+2ab t
)

cot(α) t

σ(b)
ϑ(

t

σ(b)
) e−i2π µt dt

− σ′(b)

σ(b)

∫ ∞
−∞

x(at+ b) eiπ
(

(a2−1) t2+2ab t
)

cot(α) t

σ2(b)
ϑ′(

t

σ(b)
) e−i2π µt dt,

= (p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)
) W

α,ψ

x (a, b;σ(b))

+
(
q + i2π(r + cot(α))

)
a σ(b) W

α,ψ1

x (a, b;σ(b))

− σ′(b)

σ(b)
W

α,ψ2

x (a, b;σ(b)).
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Thus if W
α,ψ

x (a, b;σ(b)) 6= 0, we have

∂
∂b
W

α,ψ

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
= p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)

+
(
q + i2π(r + cot(α))

)
a σ(b)

W
α,ψ1

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

− σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
. (‡‡)

Taking the first-order partial derivative ∂
∂a

to both sides of this above equation
(‡‡) leads to have

∂

∂a

( ∂
∂b
W

α,ψ

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

)
=
(
q + i2π(r + cot(α))

)
σ(b)

∂

∂a

(
a
W

α,ψ1

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

)
− σ′(b)

σ(b)

∂

∂a

(
W

α,ψ2

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

)
.

Therefore, if in addition, ∂
∂a

(
a W

α,ψ1
x (a,b;σ(b))

W
α,ψ
x (a,b;σ(b))

)
6= 0, then

J
α

σ(b)
(a, b) =

(
q + i2π(r + cot(α))

)
σ(b),

where J
α

σ(b)
(a, b) is defined by (6.4.2.5). Back to (‡‡), we have

∂
∂b
W

α,ψ

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
= p+ qb+ i2π(c+ rb)− σ′(b)

σ(b)
+ J

α

σ(b)
(a, b)× a

W
α,ψ1

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))

− σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

W α,ψ

x (a, b;σ(b))
.

Hence,

φ′(b) = c+ rb =
∂
∂b
W

α,ψ

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))
− Jα

σ(b)
(a, b)× a

W
α,ψ1

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

+
σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))
− 1

i2π

(
p+ qb− σ′(b)

σ(b)

)
.

Since φ′(b) is real, we conclude that

φ′(b) = c+ rb = Re

{ ∂
∂b
W

α,ψ

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))
− Jα

σ(b)
(a, b)× a

W
α,ψ1

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

+
σ′(b)

σ(b)

W
α,ψ2

x (a, b;σ(b))

i2πW α,ψ

x (a, b;σ(b))

}
.
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Therefore, for an LFM signal x(t) given by (4.3.2.1), at (a, b) on whichWα,ψ
x (a, b;σ(b)) 6=

0 and ∂
∂a

(
a W

α,ψ1
x (a,b;σ(b))

W
α,ψ
x (a,b;σ(b))

)
6= 0, the second order phase transformation Ω2

nd

x (a, b;σ(b))

defined by (6.4.2.9) is the exact IF of x(t); namely, Ω2
nd

x (a, b;σ(b)) = φ′(b) = c+rb.
This completes the proof of Theorem 6.4.1. �
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