198 research outputs found

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    SMT-based Verification of LTL Specifications with Integer Constraints and its Application to Runtime Checking of Service Substitutability

    Full text link
    An important problem that arises during the execution of service-based applications concerns the ability to determine whether a running service can be substituted with one with a different interface, for example if the former is no longer available. Standard Bounded Model Checking techniques can be used to perform this check, but they must be able to provide answers very quickly, lest the check hampers the operativeness of the application, instead of aiding it. The problem becomes even more complex when conversational services are considered, i.e., services that expose operations that have Input/Output data dependencies among them. In this paper we introduce a formal verification technique for an extension of Linear Temporal Logic that allows users to include in formulae constraints on integer variables. This technique applied to the substitutability problem for conversational services is shown to be considerably faster and with smaller memory footprint than existing ones

    Bounded Reachability for Temporal Logic over Constraint Systems

    Full text link
    We present CLTLB(D), an extension of PLTLB (PLTL with both past and future operators) augmented with atomic formulae built over a constraint system D. Even for decidable constraint systems, satisfiability and Model Checking problem of such logic can be undecidable. We introduce suitable restrictions and assumptions that are shown to make the satisfiability problem for the extended logic decidable. Moreover for a large class of constraint systems we propose an encoding that realize an effective decision procedure for the Bounded Reachability problem

    Reasoning about reversal-bounded counter machines

    Get PDF
    International audienceIn this paper, we present a short survey on reversal-bounded counter machines. It focuses on the main techniques for model-checking such counter machines with specifications expressed with formulae from some linear-time temporal logic. All the decision procedures are designed by translation into Presburger arithmetic. We provide a proof that is alternative to Ibarra's original one for showing that reachability sets are effectively definable in Presburger arithmetic. Extensions to repeated control state reachability and to additional temporal properties are discussed in the paper. The article is written to the honor of Professor Ewa Orłowska and focuses on several topics that are developped in her works

    Revisiting Reachability in Timed Automata

    Full text link
    We revisit a fundamental result in real-time verification, namely that the binary reachability relation between configurations of a given timed automaton is definable in linear arithmetic over the integers and reals. In this paper we give a new and simpler proof of this result, building on the well-known reachability analysis of timed automata involving difference bound matrices. Using this new proof, we give an exponential-space procedure for model checking the reachability fragment of the logic parametric TCTL. Finally we show that the latter problem is NEXPTIME-hard

    Model Checking Population Protocols

    Get PDF
    Population protocols are a model for parameterized systems in which a set of identical, anonymous, finite-state processes interact pairwise through rendezvous synchronization. In each step, the pair of interacting processes is chosen by a random scheduler. Angluin et al. (PODC 2004) studied population protocols as a distributed computation model. They characterized the computational power in the limit (semi-linear predicates) of a subclass of protocols (the well-specified ones). However, the modeling power of protocols go beyond computation of semi-linear predicates and they can be used to study a wide range of distributed protocols, such as asynchronous leader election or consensus, stochastic evolutionary processes, or chemical reaction networks. Correspondingly, one is interested in checking specifications on these protocols that go beyond the well-specified computation of predicates. In this paper, we characterize the decidability frontier for the model checking problem for population protocols against probabilistic linear-time specifications. We show that the model checking problem is decidable for qualitative objectives, but as hard as the reachability problem for Petri nets - a well-known hard problem without known elementary algorithms. On the other hand, model checking is undecidable for quantitative properties

    Model-Checking Counting Temporal Logics on Flat Structures

    Get PDF
    We study several extensions of linear-time and computation-tree temporal logics with quantifiers that allow for counting how often certain properties hold. For most of these extensions, the model-checking problem is undecidable, but we show that decidability can be recovered by considering flat Kripke structures where each state belongs to at most one simple loop. Most decision procedures are based on results on (flat) counter systems where counters are used to implement the evaluation of counting operators
    • …
    corecore