9,306 research outputs found

    Timed Automata Semantics for Analyzing Creol

    Full text link
    We give a real-time semantics for the concurrent, object-oriented modeling language Creol, by mapping Creol processes to a network of timed automata. We can use our semantics to verify real time properties of Creol objects, in particular to see whether processes can be scheduled correctly and meet their end-to-end deadlines. Real-time Creol can be useful for analyzing, for instance, abstract models of multi-core embedded systems. We show how analysis can be done in Uppaal.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Semantic Component Composition

    Full text link
    Building complex software systems necessitates the use of component-based architectures. In theory, of the set of components needed for a design, only some small portion of them are "custom"; the rest are reused or refactored existing pieces of software. Unfortunately, this is an idealized situation. Just because two components should work together does not mean that they will work together. The "glue" that holds components together is not just technology. The contracts that bind complex systems together implicitly define more than their explicit type. These "conceptual contracts" describe essential aspects of extra-system semantics: e.g., object models, type systems, data representation, interface action semantics, legal and contractual obligations, and more. Designers and developers spend inordinate amounts of time technologically duct-taping systems to fulfill these conceptual contracts because system-wide semantics have not been rigorously characterized or codified. This paper describes a formal characterization of the problem and discusses an initial implementation of the resulting theoretical system.Comment: 9 pages, submitted to GCSE/SAIG '0

    Time At Your Service: Schedulability Analysis of Real-Time and Distributed Services

    Get PDF
    The software today is distributed over several processing units. At a large scale this may span over the globe via the internet, or at the micro scale, a software may be distributed on several small processing units embedded in one device. Real-time distributed software and services need to be timely and respond to the requests in time. The Quality of Service of real time software depends on how it schedules its tasks to be executed. The state of the art in programming distributed software, like in Java, the scheduling is left to the underlying infrastructure and in particular the operating system, which is not anymore in the control of the applications. In this thesis, we introduce a software paradigm based on object orientation in which real-time concurrent objects are enabled to specify their own scheduling strategy. We developed high-level formal models for specifying distributed software based on this paradigm in which the quality of service requirements are specified as deadlines on performing and finishing tasks. At this level we developed techniques to verify that these requirements are satisfied. This research has opened the way to a new approach to modeling and analysis of a range of applications such as continuous planning in the context of logistics software in a dynamic environment as well as developing software for multi-core systems. Industrial companies (DEAL services) and research centers (the Uppsala Programming for Multicore Architectures Resrearch Center UPMARC) have already shown interest in the results of this thesis.LEI Universiteit LeidenFoundations of Software Technolog

    SAVCBS 2003: Specification and Verification of Component-Based Systems

    Get PDF
    These are the proceedings for the SAVCBS 2003 workshop. This workshop was held at ESEC/FSE 2003 in Helsinki Finland in September 2003

    A database model for object dynamics.

    Get PDF
    Object-oriented database systems, Dynamic object re-classification, Object role model, Dynamic class hierarchy, Object migration

    Multi-Threaded Actors

    Get PDF
    In this paper we introduce a new programming model of multi-threaded actors which feature the parallel processing of their messages. In this model an actor consists of a group of active objects which share a message queue. We provide a formal operational semantics, and a description of a Java-based implementation for the basic programming abstractions describing multi-threaded actors. Finally, we evaluate our proposal by means of an example application.Comment: In Proceedings ICE 2016, arXiv:1608.0313

    A type system for components

    Get PDF
    In modern distributed systems, dynamic reconfiguration, i.e., changing at runtime the communication pattern of a program, is chal- lenging. Generally, it is difficult to guarantee that such modifications will not disrupt ongoing computations. In a previous paper, a solution to this problem was proposed by extending the object-oriented language ABS with a component model allowing the programmer to: i) perform up- dates on objects by means of communication ports and their rebinding; and ii) precisely specify when such updates can safely occur in an object by means of critical sections. However, improper rebind operations could still occur and lead to runtime errors. The present paper introduces a type system for this component model that extends the ABS type system with the notion of ports and a precise analysis that statically enforces that no object will attempt illegal rebinding
    corecore