1,319 research outputs found

    Chebyshev Interpolation Polynomial-based Tools for Rigorous Computing

    Get PDF
    17 pagesInternational audiencePerforming numerical computations, yet being able to provide rigorous mathematical statements about the obtained result, is required in many domains like global optimization, ODE solving or integration. Taylor models, which associate to a function a pair made of a Taylor approximation polynomial and a rigorous remainder bound, are a widely used rigorous computation tool. This approach benefits from the advantages of numerical methods, but also gives the ability to make reliable statements about the approximated function. Despite the fact that approximation polynomials based on interpolation at Chebyshev nodes offer a quasi-optimal approximation to a function, together with several other useful features, an analogous to Taylor models, based on such polynomials, has not been yet well-established in the field of validated numerics. This paper presents a preliminary work for obtaining such interpolation polynomials together with validated interval bounds for approximating univariate functions. We propose two methods that make practical the use of this: one is based on a representation in Newton basis and the other uses Chebyshev polynomial basis. We compare the quality of the obtained remainders and the performance of the approaches to the ones provided by Taylor models

    Chebyshev model arithmetic for factorable functions

    Get PDF
    This article presents an arithmetic for the computation of Chebyshev models for factorable functions and an analysis of their convergence properties. Similar to Taylor models, Chebyshev models consist of a pair of a multivariate polynomial approximating the factorable function and an interval remainder term bounding the actual gap with this polynomial approximant. Propagation rules and local convergence bounds are established for the addition, multiplication and composition operations with Chebyshev models. The global convergence of this arithmetic as the polynomial expansion order increases is also discussed. A generic implementation of Chebyshev model arithmetic is available in the library MC++. It is shown through several numerical case studies that Chebyshev models provide tighter bounds than their Taylor model counterparts, but this comes at the price of extra computational burden

    Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations

    Full text link
    We analyze the convergence of compressive sensing based sampling techniques for the efficient evaluation of functionals of solutions for a class of high-dimensional, affine-parametric, linear operator equations which depend on possibly infinitely many parameters. The proposed algorithms are based on so-called "non-intrusive" sampling of the high-dimensional parameter space, reminiscent of Monte-Carlo sampling. In contrast to Monte-Carlo, however, a functional of the parametric solution is then computed via compressive sensing methods from samples of functionals of the solution. A key ingredient in our analysis of independent interest consists in a generalization of recent results on the approximate sparsity of generalized polynomial chaos representations (gpc) of the parametric solution families, in terms of the gpc series with respect to tensorized Chebyshev polynomials. In particular, we establish sufficient conditions on the parametric inputs to the parametric operator equation such that the Chebyshev coefficients of the gpc expansion are contained in certain weighted ℓp\ell_p-spaces for 0<p≀10<p\leq 1. Based on this we show that reconstructions of the parametric solutions computed from the sampled problems converge, with high probability, at the L2L_2, resp. L∞L_\infty convergence rates afforded by best ss-term approximations of the parametric solution up to logarithmic factors.Comment: revised version, 27 page

    On the resolution power of Fourier extensions for oscillatory functions

    Full text link
    Functions that are smooth but non-periodic on a certain interval possess Fourier series that lack uniform convergence and suffer from the Gibbs phenomenon. However, they can be represented accurately by a Fourier series that is periodic on a larger interval. This is commonly called a Fourier extension. When constructed in a particular manner, Fourier extensions share many of the same features of a standard Fourier series. In particular, one can compute Fourier extensions which converge spectrally fast whenever the function is smooth, and exponentially fast if the function is analytic, much the same as the Fourier series of a smooth/analytic and periodic function. With this in mind, the purpose of this paper is to describe, analyze and explain the observation that Fourier extensions, much like classical Fourier series, also have excellent resolution properties for representing oscillatory functions. The resolution power, or required number of degrees of freedom per wavelength, depends on a user-controlled parameter and, as we show, it varies between 2 and \pi. The former value is optimal and is achieved by classical Fourier series for periodic functions, for example. The latter value is the resolution power of algebraic polynomial approximations. Thus, Fourier extensions with an appropriate choice of parameter are eminently suitable for problems with moderate to high degrees of oscillation.Comment: Revised versio
    • 

    corecore