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Abstract

Performing numerical computations, yet being able to provide rigorous
mathematical statements about the obtained result, is required in many
domains like global optimization, ODE solving or integration. Taylor
models, which associate to a function a pair made of a Taylor approxi-
mation polynomial and a rigorous remainder bound, are a widely used
rigorous computation tool. This approach benefits from the advantages
of numerical methods, but also gives the ability to make reliable state-
ments about the approximated function. Despite the fact that approxi-
mation polynomials based on interpolation at Chebyshev nodes offer a
quasi-optimal approximation to a function, together with several other
useful features, an analogous to Taylor models, based on such polyno-
mials, has not been yet well-established in the field of validated numer-
ics.
This paper presents a preliminary work for obtaining such interpola-
tion polynomials together with validated interval bounds for approxi-
mating univariate functions. We propose two methods that make prac-
tical the use of this: one is based on a representation in Newton basis
and the other uses Chebyshev polynomial basis. We compare the qual-
ity of the obtained remainders and the performance of the approaches
to the ones provided by Taylor models.

Keywords: Rigorous Computing, Validated Numerics, Interpolation Polynomial,
Chebyshev Polynomials, Taylor Models
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1 Introduction

Computers are used nowadays to quickly give numerical solutions to various global op-
timization, ODE solving or integration problems. However, traditional numeric methods
usually provide only approximate values for the solution. Bounds for the approximation
errors are only sometimes available, are not guaranteed to be accurate or are sometimes un-
reliable. In contrast, validated computing aims at providing rigorously verified information
about solutions, in order to complete proofs, or to give rigorous mathematical statements
about the obtained result.

Interval arithmetic [21] is a classical tool to perform validated computationswith floating-
point arithmetic. Intervals are well-suited to represent enclosures of real numbers on a ma-
chine. However, they propagate only information about function values, and fail to convey
much information about the other properties about the function itself. In particular, when
modeling functions with interval arithmetic, splitting the domain in subintervals is usually
required. For some cases, known as "high dependency problems“ [5, 6, 12, 11] the number
of necessary subintervals becomes unfeasible.

Taylor models [19, 5, 6], introduced by Berz and his group offer a remedy to this problem.
They provide another way to rigorously manipulate and evaluate functions using floating-
point arithmetic. They have been widely used for validated computing for global optimiza-
tion and range bounding [18, 5, 11, 6], solutions of ODEs [23], quadrature [4], etc.

A Taylor model (TM) of order n for a function f which is supposed to be n+1 times con-
tinuously differentiable over an interval [a, b], is a rigorous polynomial approximation of f .
More specifically, it is a couple (P,∆) formed by a polynomial P of degree n, and an interval
part ∆, such that f(x) − P (x) ∈ ∆,∀x ∈ [a, b]. Roughly speaking, the polynomial can be
seen as a Taylor expansion of the function at a given point. The interval ∆ provides the vali-
dation of the approximation, meaning that it provides an enclosure of all the approximation
errors encountered (truncation, roundings).

A natural idea is to try to replace Taylor polynomials with better approximations such
as minimax approximation, Chebyshev truncated series or interpolation polynomials (also
called approximate Chebyshev truncated series when the points under consideration are
Chebyshev nodes) for instance. The last two kind of approximations are of particular rel-
evance for replacing Taylor polynomials since the series they define converge on domains
better shaped for various usual applications than Taylor expansions (see, for instance, Sec-
tion 2.7 of [9] for a more detailed account). Moreover, we can take advantage of numerous
powerful techniques for computing these approximations. So far, the attempts for using
these better approximations, in the context of rigorous computing, do not seem to have suc-
ceeded, see for example [19] for a comparison of existing techniques.

In this work we propose two approaches for computing models based on interpolation
polynomials at Chebyshev nodes, what we call “Chebyshev interpolation models” (CM).
The first method is based on Newton Basis and the second on Chebyshev polynomial ba-
sis. We believe that bringing a certified remainder to an approximate truncated Chebyshev
series and providing effective tools for working with such models, opens the way to adapt-
ing to rigorous computing many numerical algorithms based on Chebyshev interpolation
polynomials, for rigorous ODE solving, quadrature, etc.

The outline of the paper is the following. We first recall or prove various definitions and
results required by our approaches in Section 2. In Section 3, we present in more details
TMs and we discuss the use of better polynomial approximations. Then, we introduce the
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notion of “Chebyshev interpolation models” in Section 4. The CMs are implemented using
multiple precision interval arithmetic in order to perform rigorous computing and yet, for
the sake of clarity, we present their implementation in exact arithmetic in Section 5. We give
some results and a comparison of our models with TMs in Section 6. We end with a brief
conclusion and a mention of our future works on the subject.

2 Some preliminary statements

about interpolation and Chebyshev polynomials

We first give a very short reminder on Chebyshev polynomials. A detailed presentation can
be found in [7, 29]. Then we state some interpolation results that we use in the sequel.

2.1 Some basic facts about Chebyshev polynomials

Over [−1, 1], Chebyshev polynomials can be defined as
Tn(x) = cos (n arccos x) , n ≥ 0. Since we consider functions over any interval I = [a, b], we

define in the following the Chebyshev polynomials over I as T
[a,b]
n (x) = Tn

(

2x−b−a
b−a

)

.

T
[a,b]
n+1 has n + 1 distinct real roots in [a, b], called “Chebyshev nodes” since they are of

utmost interest for interpolation:

x∗
i =

a + b

2
+

b − a

2
cos

(

(i + 1/2)π

n + 1

)

, i = 0, . . . , n. (1)

We now recall

Lemma 2.1 The polynomial Wx∗(x) =
n
∏

i=0
(x − x∗

i ), is the monic degree-n + 1 polynomial that

minimizes the supremum norm over [a, b] of all monic polynomials in C[x] of degree at most n + 1.
We have

Wx∗(x) =
(b − a)n+1

22n+1
T

[a,b]
n+1 (x)

and

max
x∈[a,b]

|Wx∗(x)| =
(b − a)n+1

22n+1
.

2.2 Brief overview of interpolation results used

Let I = [a, b] be an interval. Let f be a function that is at least n + 1 times continuously
differentiable over I . Let {yi, i = 0, . . . , n} be a set of n + 1 points in I . There exists a unique
polynomial P of degree ≤ n which interpolates f at these points [10]: P (yi) = f(yi), i =
0, . . . , n, or if yi is repeated k times, P (j)(yi) = f (j)(yi), j = 0, . . . , k − 1. If all the points are
distinct, this is called Lagrange interpolation. In the extreme case that all the yi are equal, P
is just the Taylor polynomial of f at the considered point.

Several algorithms and interpolation formulae in various basis exist for representing P ,
for examplemonomial basis, Lagrange, Newton, Barycentric Lagrange, Chebyshev basis [10,
3, 31]. The numerical properties (stability) of these formulas have been widely studied in the
literature [17].
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Let us consider the polynomial P in Newton basis: P (x) =
n
∑

i=0
ciNy,i(x), where Ny,0(x) =

1 andNy,i =
i−1
∏

j=0
(x−yj), i = 1, . . . , n. The coefficients ci are the divided-differences f [y0, . . . , yi]

of f at the points y0, . . . , yi. As mentioned above, if k points coincide, it suffices to take
the successive k − 1 derivatives of f . Note that ci can be obtained thanks to the divided-
differences algorithm [15, 31]. Moreover, the error between f and P is given [15, 31] by:

∀x ∈ I, f(x) − P (x) = f [y0, . . . , yn, x]Wy(x) (2)

with Wy(x) =
∏n

i=0(x− yi). By a repeated application of Rolle’s theorem [10, 15, 31], we get:
∀x ∈ I, ∃ξ ∈ (a, b) s.t.

f(x) − P (x) =
1

(n + 1)!
f (n+1)(ξ)Wy(x). (3)

In the sequel we denote the rightmember of this formula for the error by∆n(x, ξ). Lemma 2.1
suggests that a clever choice of interpolation points seems to be the Chebyshev nodes (1),
which is indeed the case as mentioned in 3.2.2.

We will take advantage of the following lemma which generalizes Lemma 5.12 of [33]:

Lemma 2.2 Under the assumptions on f and yi above, if f (n+1) is increasing (resp. decreasing) over
I , then f [y0, . . . , yn, x] is increasing (resp. decreasing) over I .

Assume that f (n+1) is increasing. We know (see Chap. 4 of [31] for instance) that, for all
x ∈ [a, b], we have

f [y0, . . . , yn, x] =

∫ 1

0

∫ t1

0
· · ·

∫ tn

0
f (n+1)(y0 + t1(y1 − y0)

+ · · · + tn+1(x − yn))dt1 · · ·dtn+1.

Let x, y ∈ [a, b], x ≤ y, let Zn denote y0 + t1(y1 − y0) + · · ·+ tn(yn − yn−1)− tn+1yn, we notice
that

f [y0, . . . , yn, y] − f [y0, . . . , yn, x] =

∫ 1

0

∫ t1

0
· · ·

∫ tn

0
(

f (n+1)(Zn + tn+1y) − f (n+1)(Zn + tn+1x)
)

dt1 · · ·dtn+1.

Since tn+1 ≥ 0, we have Zn + tn+1y ≥ Zn + tn+1x. As f (n+1) is increasing, it follows that the
integrand is nonnegative, which implies f [y0, . . . , yn, y] ≥ f [y0, . . . , yn, x].

3 Taylor models vs. using better approximations

3.1 Basic principles of Taylor models

Computing a TM consists in computing a polynomial together with an interval bound by
applying simple rules recursively on the structure of the function f . In fact, for functions like
trigonometric, exponential, logarithmic functions, as well as operations like 1/x or the power
function, all referred to in this article as basic functions (or as intrinsics in [18]), bounds
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for the remainders can be easily computed. For composite functions, TMs offer usually a
much tighter bound than the one directly computed for the whole function, for example
using automatic differentiation [1, 26, 21]. A meaningful comparison for this phenomenon is
provided in [11, 19]. Here we provide the reader with a quick overview of the situation. Let
u be a basic function defined on I and v a basic function defined on J , an interval enclosing
the image u(I). Consider the Taylor expansion of a composite function v ◦ u about x0 ∈ I .
The Taylor remainder is given by the Lagrange formula: for all x ∈ I , there exists ξ ∈ (a, b)
such that

R(x) =
(v ◦ u)(n+1)(ξ)

(n + 1)!
(x − x0)

n+1.

When bounding the remainder by means of automatic differentiation, an interval K en-
closing the values of the n + 1-th derivative of this composite function (v ◦ u)(n+1)(I) is ob-
tained by performing many recursive operations involving enclosures of u(i)(I) and v(i)(J)
which finally may produce a considerable overestimation in the remainder [11].

In contrast, TMs compute polynomials and interval bounds directly for v and u, and then
use algebraic rules for computing a TM for the composition v◦u. Since both v and u are basic
functions, evaluating with interval arithmetic their n + 1-th derivative can be done in a fast
way using simple formulae and does not lead to serious overestimation.

Morevoer, most of the functions we deal with have Taylor series whose coefficients de-
crease. In particular, when the functions are analytic over a sufficiently large domain (a
disk of radius > 1 suffices), the magnitude of the coefficients of the underlying polynomial
decreases exponentially (this is a consequence of Cauchy’s integral formula). Hence when
performing the composition of two such models, the intervals contributing to the final re-
mainder become smaller for monomials of higher degree. This leads to a reduced overesti-
mation in the computed remainder.

In conclusion, we highlight that, in practice, it is significantly more suitable to use a two-
step procedure for handling composite functions: first step consists in computing models
(P,∆) for all basic functions; second, apply algebraic rules specifically designed for handling
operations with these mixed models instead of operations with the corresponding functions.

3.2 Substituting tighter polynomial approximations to Taylor polynomials

It is well known that Taylor polynomials can be fairly poor approximations to functions, ex-
cept perhaps on very small intervals. The idea of using better approximation polynomials,
for example Chebyshev truncated series, in the context of validated computations was in-
troduced in [14] under the name ultra-arithmetic, which we first briefly present. Then, we
turn to a first introduction of the CMs and give the basic principles which they rely on. We
finally address the case of minimax approximation. The case of truncated Chebyshev series
is mentioned in the conclusion of this paper.

3.2.1 A previous attempt

As explained in [19], in the setting of ultra-arithmetic, the advantages of non-Taylor approx-
imations cannot be explicitly maintained due to several drawbacks. It is noted in [19] that
the Taylor representation is a special case, because for two functions f1 and f2, the Taylor
representation of order n, for the product f1 · f2 can be obtained merely from the Taylor
expansions of f1 and f2, simply by multiplying the polynomials and discarding the orders
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n + 1 to 2n. On the contrary, the Chebyshev truncated series of a product f1 · f2 can in
general not be obtained from the Chebyshev representations of the factors f1 and f2, and
no operation analogous to TMs multiplication is given. Moreover, there is no systematic
treatment of common basic functions. Finally, [19] explains that the methods developed
in ultra-arithmetic can lead to an increase in the magnitude of the coefficients, which will
increase both the computational errors and the difficulty of finding good interval enclosures
of the polynomials involved.

3.2.2 Chebyshev interpolation polynomial

A natural idea is to consider an interpolation polynomial instead of a Taylor approximation:
if the polynomial interpolates the function at Chebyshev nodes, such a polynomial, which
we call Chebyshev interpolation polynomial, can usually provide a near-optimal approxi-
mation of f . See e.g. [25] which states an effective measure of this property.

Trefethen [32] uses the idea of representing the functions by Chebyshev interpolation
polynomials. He chooses their expansion length in such a way as to maintain the accuracy
of the approximation obtained close to machine precision. Moreover, the idea of using basic
functions and then consider an algebra on them is used. The developed software, Chebfun
was successfully used for numerically solving differential equations, quadrature problems.
However, the Chebfun system does not provide any validation of the results obtained. As
mentioned in [32], the aim of this system are numerical computations and no formal proof
or safeguards are yet implemented to guarantee a validated computation, although it seems
to be a future project.

3.2.3 Towards Chebyshev interpolation models

The interpolation polynomial itself is easy to compute and a wide variety of methods and
various basis representations exist (we refer the reader to any numerical analysis book,
see [31] for instance, for its computation). Another advantage of interpolation polynomi-
als is that a closed formula, hence an explicit bound, for the remainder exists, cf. (2) and (3).
Lemma 2.1 and Formula (3) induces that for a Chebyshev interpolation polynomial of de-
gree n, roughly speaking, compared to a Taylor remainder, the interpolation error will be
scaled down by a factor of 2−n. For bounding the remainder, the only remaining difficulty
is to bound the term f (n+1)(ξ) for ξ ∈ I . However, as briefly discussed above and in [11] the
advantage of using directly this formula for the remainder can not be effectively maintained
if the interval bound is obtained using automatic differentiation because of the overestima-
tion. Hence in what follows we will try to adapt the ”basic bricks” approach used by TMs to
one using interpolation polynomials.

3.2.4 Minimax approximation

One might first try to directly use the minimax polynomial which is the polynomial which
minimizes the supremum norm of the approximation error. In fact, such a polynomial can
be obtained only through an iterative procedure, namely Remez algorithm, which can be
considered too computationally expensive in our context. But themain drawback is linked to
the computation of the remainder: either obtaining a certified remainder in such a procedure,
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raises a significant dependency problem as discussed in [12, 11], or the closed formula, due
to Bernstein [13], does not bring any improvement over Formula (3).

4 Chebyshev Interpolation Models

In the following we consider a Chebyshev Interpolation model (CM) of degree n for a func-
tion f over an interval I , as a couple (P,∆), in the following sense: P is a polynomial of
degree n which is “closely related” to the Chebyshev interpolation polynomial for f , ∆ is
an interval enclosure for the remainder f − P . Specifically, from the mathematical point of
view, for basic functions f , this polynomial P coincides with the Chebyshev interpolation
polynomial and the computation of ∆ is detailed in 5.1.2. For composite functions, we will
use some algebraic rules defined in Section 5 in a similar manner to the TMs arithmetic. We
insist that our setting is multiple-precision interval arithmetic and all algorithms chosen are
adapted for and implemented specifically for it. Since a thorough description of their im-
plementation is tedious we indicate some implementation hints in 4.2. Before doing this, we
explain why we chose to use Newton and Chebyshev bases for performing operations over
CMs.

4.1 Choice of representation basis

When computing an interpolation polynomial P two key choices are: the interpolating
nodes (which are Chebyshev nodes (1), in this paper), and the basis used for implemen-
tation.

In our case, however, a third essential requirement emerges: one has to be able to find
suitable algebraic rules for operations with models (P,∆) that will not lead to overestima-
tion of the remainder in the resulted model. This implies that addition, multiplication or
composition of models made out of polynomials P , together with an interval remainder
bound, has to be an effective process not only in terms of performance and quality of the
polynomial obtained, but also in terms of quality of remainder. We note, that in what con-
cerns addition, the representation of P in any basis will suffice, since this is a linear operator.

For multiplication, as discussed in 3.2.1, it has not been obvious so far how to devise
an efficient algorithm that, given two functions f1 and f2 and their models (P1,∆1) and
(P2,∆2), where the polynomial part is obtained through an interpolation process, is able to
efficiently compute a model (P,∆) for f1 · f2. Furthermore, composition rules f1 ◦ f2 were
even more difficult to obtain. On the contrary, these operations are straightforward for TMs,
which is one of their incontestable advantages.

Consequently, we were led to searching for suitable basis representations for P such that
all these requirements are successful. We eliminated a Lagrange basis representation for P
not only because of its poor numerical properties [17], but also because of the n − 1 terms
containing each n − 1 products of x − x∗

i . This leads to high overestimations on the interval
remainder when a composition operation was tried.

In what concerns using barycentric Lagrange basis versus Newton basis, it is proved
in [17] that the first has better numerical properties. However, Newton basis also has good
numerical properties for certain orderings of points [17]. In our case, barycentric Lagrange
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has the disadvantage that the polynomial P is represented as

(

n
∑

i=0

wi

x − x∗
i

f(x∗
i )

)

/

(

n
∑

i=0

wi

x − x∗
i

)

.

It seems cumbersome to implementmultiplication and composition of twomodels using this
representation for P . We note that when composition should be implemented, the reciprocal
1/(x− x∗

i ) should be designed. This leads to considerable overestimations of the remainder.
We note that Newton basis can be seen as an "immediate extension” to Taylor basis, so

it is a natural try to make and leads to an adaptation of TMs algorithms. In what follows
we consider the Newton basis at Chebyshev nodes taken in decreasing order, as given by
Formula (1). This order has good numerical properties, see for example Section 5.3 [16]. In
Section 5 we show how multiplications and composition operations can be implemented.

As for Chebyshev basis, we were led to this choice mainly because of the remarkable
properties and success of numerical methods based on Chebyshev series expansions [9, 3].

Moreover, as we will see in Section 5.4, for most of the functions we consider, the rapid
decreasing of the coefficients in the representations in the last two bases allow for small
overestimation when handling CMs.

We now give some basic operations that will be used during the operations on the mod-
els.

Operations with polynomials in Newton basis Consider two polynomials of degree n in

Newton basis: P (x) =
n
∑

i=0
piNx∗,i(x) and Q(x) =

n
∑

i=0
qiNx∗,i(x).

Addition. Adding two polynomials in Newton basis is straightforward: P (x) + Q(x) =
n
∑

i=0
(pi + qi)Nx∗,i(x)

Multiplication. When multiplying two polynomials in Newton basis, we need that ”the
lower part“ of the result be represented in this basis also, and the ”upper part“, should be
represented such that it can be easily bounded with interval arithmetic. Hence, we chose to
represent the product PQ in the basis Nx∗,0, . . . , Nx∗,n, Wx∗Nx∗,0, . . . , Wx∗Nx∗,n−1. We have

P (x) · Q(x) = G(x) + Wx∗(x)H(x), where G(x) =
n
∑

i=0
giNx∗,i(x) and H(x) =

n−1
∑

i=0
hiNx∗,i(x).

One of the advantages of this representation is that we gave an exact interval bound for
Wx∗ in Section 2.1. Moreover, it can be easily shown thatG(x) is the Chebyshev interpolation
polynomial of P (x) · Q(x), i.e. of fg.

In order to compute the coefficients of G and H one can use several techniques. We men-
tion that based on [8] a conversion back to monomial basis, followed by an interpolation
seems to be the fastest asymptotically (needing O(M(n) log n) operations, where M(n) de-
notes the cost of multiplying univariate polynomials of degree less than n). However, in our
current multiple precision interval arithmetic implementation, we use an O(n2) algorithm
based on applying the divided differences algorithm first for computing the coefficients of
G and then for computing the coefficients of H = (PQ − G)/Wx∗ .

Interval Range Bounding. We use a Horner-like algorithm [16] for bounding the range of a
polynomial in Newton basis, which takes O(n) operations.
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Operations with polynomials in Chebyshev basis Consider two polynomials of degree n

in Chebyshev basis: P (x) =
n
∑

i=0
piT

[a,b]
i (x) and Q(x) =

n
∑

i=0
qiT

[a,b]
i (x).

Addition. Adding two polynomials in Chebyshev basis is straightforward: P (x)+Q(x) =
n
∑

i=0
(pi + qi)T

[a,b]
i (x) and takes O(n) operations.

Multiplication. Their product can be expressed in Chebyshev basis as follows: P (x) ·

Q(x) =
2n
∑

k=0

ckT
[a,b]
k (x), where ck = (

∑

|i−j|=k

pi · qj +
∑

i+j=k

pi · qj)/2. This identity can be

obtained noting [20] that T
[a,b]
i (x) · T

[a,b]
j (x) = (T

[a,b]
i+j + T

[a,b]
|i−j|)/2. The cost using this simple

identity is O(n2) operations.

Interval Range Bounding. For our purpose, we will use the following identity for interval
bounding range of a polynomial in Chebyshev basis, which takes O(n) operations: ∀x ∈

[a, b], P (x) ∈ p0 +
n
∑

i=1
pi · [−1, 1].

4.2 Rigorous implementation of the interpolation process

In the following, we denote an interval x as a pair x = [x, x]. For a polynomial P with real
number coefficients, we denote byP a polynomial obtained by replacing its coefficients with
intervals which enclose them.

We implemented all the operations involved using multiple-precision interval arithmetic
and all the algorithms we use are straightforwardly adaptable in this context. Hence, from
the implementation point of view, the only notable change is that instead of polynomials
with real number coefficients we have polynomials with tight interval coefficients. This
means that in our implementation, for a function f we obtain a model (P ,∆), such that
∀x ∈ [a, b], f(x) ∈ P (x) + ∆. This design choice allows us to take into account all the
rounding errors, because for each operation with interval arithmetic an outward rounding
is performed. Moreover, it is proved in [28] that when evaluating a function ϕ over a point
interval x = [x, x], the interval enclosure of ϕ(x) can be made arbitrarily tight by increasing
the precision used for evaluation. In our case the computations needed for the coefficients
of the polynomial are done with initially almost point intervals, so the overestimation of the
coefficients can be made as small as possible by increasing the precision used.

However, if needed, a certified floating-point approximation polynomial can be easily

obtained from a CM (P ,∆). Let us consider P (x) =
n
∑

i=0
ciβi(x) where βi is the ith element

of the considered basis (Newton or Chebyshev). It suffices to take the middle points ti of ci

as the coefficients of the approximation polynomial P̃ (x) =
n
∑

i=0
tiβi(x) and then to compute

a simple interval bound δ =
n
∑

i=0
[ci − ti, ci − ti] · βi(x), using the methods presented in

Section 4.1. Then the error between the function f and its approximation polynomial P̃ is
bounded by δ + ∆.
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5 Chebyshev Interpolation Models with exact arithmetic

We follow the two-step approach specific for TMs, as mentioned in Section 3. As detailed be-
low, firstly, we compute models for basic functions; secondly we apply specifically designed
algebraic operations on such models.

5.1 Basic functions

We consider as basic functions the trigonometric, exponential, logarithmic functions, 1/x,
the power function, or any other function for which specific properties can be exploited. For
such functions we compute directly a model (P,∆) formed by an interpolation polynomial
P and an interval bound for the remainder ∆.

5.1.1 Computation of the interpolation polynomial

Wementioned in 2.2 how to express an interpolation polynomial in Newton basis, using the
divided differences procedure. The number of operations necessary to compute the coeffi-
cients of the interpolation polynomial is 3n2/2 [16].

We now need to know how to represent it using Chebyshev basis. The Chebyshev in-
terpolation polynomial P can be expressed using the collocation method [20] as follows:

P (x) =
n
∑

i=0
piT

[a,b]
i (x), with pi =

n
∑

k=0

2
n+1f(x∗

k)T
[a,b]
i (x∗

k).

Using directly this formula, the computation cost is O(n2) operations. It is known [24]
that the usage of Fast Fourier Transform, can speed-up this computation to O(n log n) oper-
ations. However, note that in this case, an interval arithmetic adaptation of FFT should be
considered.

5.1.2 Computation of the remainder

We can compute an enclosure of the remainder f−P over [a, b] using Formula (3): ∆n(x, ξ) =
f (n+1)(ξ)Wx∗(x)/(n + 1)!, where x, ξ ∈ [a, b]. This reduces to bounding f (n+1) over [a, b],
which does not pose any problem for basic functions, since simple formulae are available
for their derivatives. Moreover, Wx∗(x) can be bounded straightforwardly using Lemma 2.1.

We remark that, thanks to Lemma 2.2, an exact bound for the remainder can be com-
puted when one can show that f (n+1) is increasing (resp. decreasing) over [a, b]. In such
cases, one can use (2) and bound f [x∗

0, . . . , x
∗
n, x] by [ f [x∗

0, . . . , x
∗
n, a], f [x∗

0, . . . , x
∗
n, b] ] (resp.

[ f [x∗
0, . . . , x

∗
n, b], f [x∗

0, . . . , x
∗
n, a] ]). For basic functions, checking whether f (n+2) has con-

stant sign over [a, b] is simple. This remark makes it possible to obtain smaller remainders
and strengthens the effectiveness of the “basic bricks” approach.

5.1.3 Bounding the interpolation polynomial

When using this approach, one needs to compute bounds for the range of polynomials in-
volved in such models. We denote by B(P ) an interval range bound for a polynomial P ,
over a given interval I . Several methods exist and a trade-off between their speed and the
tightness of the bound is usually considered. For TMs, the fastest but "rough" method is a
Horner-like interval evaluation. More complicated schemes exist, that usually give tighter
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bounds: LDB, QDB [5], or using a conversion to Bernstein basis [22, 33]. For univariate poly-
nomials, slower techniques based on root isolation can be used for a very tight polynomial
bounding [30]. In our case, we focused on speed, and so, when considering interval range
bounding for polynomials in Newton or Chebyshev basis we used two simple methods de-
scribed in Section 4.1. Similarly to TMs, for a penalty in speed, more refined algorithms can
also be plugged-in. However the simple techniques we used, proved effective in most of the
examples we treated so far.

5.2 Addition and multiplication

In what follows we consider two CMs for two functions f1 and f2, over I , of degree n:
(P1,∆1) and (P2,∆2). Adding the two models is done by adding the two polynomials and
the remainder bounds:

(P1,∆1) + (P2,∆2) = (P1 + P2,∆1 + ∆2).

Note that adding two polynomials in Newton or Chebyshev basis is straightforward and
has a linear complexity, see Section 4.1.

For proving the correction we note that: ∀x ∈ I,∃δ1 ∈ ∆1 and δ2 ∈ ∆2 s.t. f1(x) −
P1(x) = δ1 and f2(x)−P2(x) = δ2.Hence f1(x)+f2(x)−(P1(x) + P2(x)) = δ1+δ2 ∈ ∆1+∆2.

For multiplication, we have

f1(x) · f2(x) = P1(x) · P2(x) + P2(x) · δ1 + P1(x) · δ2 + δ1 · δ2.

We observe that P1 · P2 is a polynomial of degree 2n. Depending on the basis used, we split
it into two parts: the polynomial consisting of the terms that “do not exceed n”, (P1 · P2)0...n

and respectively the upper part (P1 · P2)n+1...2n, for the terms of the product P1 · P2 whose
“order exceeds n”.

Now, a CM for f1 · f2 can be obtained by finding an interval bound ∆ for all the terms
except P = (P1 · P2)0...n:

∆ = B((P1 · P2)n+1...2n) + B(P2) · ∆1 + B(P1) · ∆2 + ∆1 · ∆2.

The interval bound for the polynomials involved can be computed as discussed in 5.1.3.
In our current setting, cf. Section 4.1, the number of operations necessary to multiply two

such models is O(n2).
For the sake of completeness, wemention that multiplying a CMwith a constant, reduces

to multiplying the polynomial and the remainder with the respective constant.

5.3 Composition

When the model for f1 ◦ f2 is needed, we can consider (f1 ◦ f2)(x) as function f1 evaluated
at point y = f2(x). Hence, we have to take into account the additional constraint that the
image of f2 has to be included in the definition range of f1. This can be checked by a simple
interval bound computation of B(P2) + ∆2. Then we have:

(f1 ◦ f2)(x) − P1(f2(x)) ∈ ∆1 (4)

which implies that
(f1 ◦ f2)(x) − P1(P2(x) + ∆2) ∈ ∆1 (5)
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In this formula, the only polynomial coefficients and remainders involved are those of the
CMs of f1 and f2 which are basic functions. As we have seen above, fairly simple formulæ
exist for computing the coefficients and remainders of such functions. However, when using
Formula (4), it is not obvious how to extract a polynomial and a final remainder bound from
it. In fact, we have to reduce this extraction process to performing just multiplications and
additions of CMs. A similar idea is used for composing TMs [19, 33].

In our case, the difference is thatP1 andP2 are polynomials represented inNewton/Chebyshev
basis, and not in the monomial basis. In consequence, for computing the composition, we
had to use a different algorithm. It is worth mentioning that a simple change of basis back
and forth to monomial basis will not be successful. The problem is that the multiplications
and additions used in such a composition process do not have to add too much overestima-
tion to the final remainder. As we discussed in Section 3, for Taylor expansions of most of
the functions we address, the size of the coefficients for the representation in the monomial
basis is bounded by a decreasing sequence. Hence the contributions of the remainders in
such a recursive algorithm are smaller and smaller. On the contrary, for interpolation poly-
nomials, the coefficients represented in monomial basis oscillate too much and have poor
numerical properties. Hence, a direct application of the principle of composing TMs will not
be successful.

When usingNewton basis, we perform the composition using aHorner-like algorithm [16].
It takes a linear number of operations between models.

Algorithm 1 Horner-like composition of CMs in Newton basis: Composing (P1,∆1)with (P2,∆2)

/*We denote by P1j the jth coefficient of P1*/
/*and by x∗

j the jth interpolation point for P1 */
(Cn, Rn) := (P1n, [0, 0])
For j = n − 1, . . . , 0 do
(Cj , Rj) := ((P2,∆2) − (x∗

j , [0, 0])) · (Cj+1, Rj+1) + (P1j , [0, 0]) ;
Return (C0, R0 + ∆1)

When using Chebyshev basis, we perform the composition using an adaptation of Clenshaw
algorithm [20]. Algorithm 2 is used for efficient evaluation of a Chebyshev sum

∑

ciTi(x).
It reduces evaluation of such polynomials to basic additions and multiplications and it is
as efficient as Horner form for evaluating a polynomial as a sum of powers using nested
multiplications. In our case, the variable x where the sum is to be evaluated is a CM, the
multiplications and additions are operations between CMs. Moreover, using this algorithm,
we perform a linear number of such operations between models.

Algorithm 2 Clenshaw-like composition of CMs in Chebyshev basis: Composing (P1,∆1) with
(P2,∆2)

(Cn+2, Rn+2) := (0, [0, 0]) /*CMs for 0*/
(Cn+1, Rn+1) := (0, [0, 0])
/*We denote by P1j the jth coefficient of P1*/
For j = n, . . . , 1 do
(Cj , Rj) := 2 · (P2,∆2) · (Cj+1, Rj+1) − (Cj+2, Rj+2) + (P1j , [0, 0]) ;
(C,R) := (P2,∆2) · (C1, R1) − (C2, R2) + (P10, [0, 0])
Return (C,R + ∆1)



12 N. Brisebarre, M. Joldeş

5.4 Growth of the coefficients and overestimation

The overestimation does not grow too much during the recursion process. This is due to
the nice convergence properties of the series expansions in Newton Basis or in Chebyshev
polynomial basis. One can prove for instance that if the function under consideration is
analytic over a “sufficiently large” domain of C which contains [a, b], the coefficients of the
expansion in Newton [15] or in Chebyshev [9] bases decrease exponentially. As with TMs,
when composing two such models, the intervals contributing to the final remainder become
smaller for higher coefficients, which yields a reduced overestimation in the final remainder.

6 Experimental results

We implemented the two methods in Maple, using the IntpakX1 package. The Maple code
can be downloaded from http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels. Ta-
ble 1 shows the quality of some absolute error bounds obtained with the following presented
methods: CMs, direct interpolation combined with AD, and TMs respectively. Each row of
the table represents one example. The function f , the interval I and the degree n of the
approximation polynomial are given in the first column.

We computed, as explained in Section 5, two CMs: one using polynomials in Newton
basis CM1 = (P1,∆1) and the other CM2 = (P2,∆2) using Chebyshev basis. Let ∆1 =
[α1, β1] and ∆2 = [α2, β2], we provide in the second and third columns rigorous upper-
bounds for max(|α1|, |β1|) and max(|α2|, |β2|) respectively.

In order to observe the amount of overestimation we computed the exact error bounds
ε1 = supx∈I{|f(x) − P1(x)|} and ε2 = supx∈I{|f(x) − P2(x)|} and we provide in the fourth
column the minimum of the two: εCM = min{ε1, ε2}.

We give in fifth and sixth columns the computed remainder bounds and the exact error
obtained when an interpolating polynomial is directly used (directly means that the remain-
der is computed using (3) and automatic differentiation). Finally we present the computed
remainder bound obtained using a TM and the corresponding exact error. The Taylor poly-
nomial was developed in the middle of I and the necessary polynomials bounds were com-
puted using a Horner scheme.

The first five examples were analyzed in [11] for comparing the bounds obtained with
interpolation vs. TMs. There, it was observed that in some cases the overestimation in the
interpolation remainder is so big, that we can not benefit from using such a polynomial. We
used them in order to highlight that CMs do not have this drawback and the remainders
obtained with our methods have better quality than the TMs in all situations.

The first example presents a basic function which is analytic on the whole complex plane.
There is almost no overestimation in this case, whatever method we use. The second is also
a basic function. It has singularities in the complex plane (in π/2 + Zπ), but the interval I

is relatively far from these singularities. All the methods present a relatively small overes-
timation. The third example is the same function but over a larger interval. In these case,
the singularities are closer and Taylor polynomials are not very good approximations. The
fourth and fifth examples are composite functions on larger intervals. The overestimation in
the interpolation method becomes very large, rendering this method useless, while it stays
reasonable with TMs and CMs.

1http://www.math.uni-wuppertal.de/~xsc/software/intpakX/

http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels
http://www.math.uni-wuppertal.de/~xsc/software/intpakX/
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The following examples (6 − 8) are similar to some presented in [3]. There, the authors
computed the minimax polynomials for these functions. Evidently, the polynomials ob-
tained with CMs have a higher approximation error than the minimax, however, it is im-
portant to notice that in these tricky cases the remainder bound obtained for the CMs stays
fairly good and is much better than the one obtained from TMs.

Examples 8 − 9 present the case when the definition domain of the function is close
to a singularity. As seen in these examples, when a direct interpolation process is used
for a composite function, unfortunately, one can not apply Lemma 2.2 for bounding the
remainder. Consequently, the bound obtained for the remainder is highly overestimated.
However, when using the approach based on “basic bricks” both TMs and CMs benefit from
it, yielding a much better remainder bound.

Example 10 deals with a functionwhich is associated to the classical Runge phenomenon.
Firstly, since the complex singularities of the function f defined by f(x) = 1/(1 + 4x2) are
close to the definition interval I , the Taylor polynomial is not a good approximation. Then,
the interpolation method gives unfeasible interval remainder bounds due to the overestima-
tion of the n + 1th derivative of the function f . TMs and CM1 fail both from the same cause:
when computing a model for f = g ◦ h one needs to compose the models for g(y) = 1/y and
h(x) = 1+4x2. The model for h is simple to compute. However, one has to take into account
that the model of g has to be computed over an interval range enclosure of the model of h.
When such an enclosure is computed, using the presented simple methods for polynomial
range bounding we have an overestimation of the image of h. This leads in fact to an interval
that contains 0. Hence, the model for g which is not defined in 0 can not be computed. On
the contrary, the overestimation in polynomial range bounding with the method of CM2 is
smaller and we have a feasible remainder in this case.

We do not give specific timings, since for the moment our implementation is rather a
“proof of concept” one. The algorithms necessary for TMs seem to be slightly simpler and
hence more efficient than the ones needed by our approaches: we observed a factor between
2 and 3 of speed-up in favor of TMs, for cases when Taylor approximations are fairly good
ones (tight intervals, analytic functions). However, we note that in some cases (when con-
sidering larger intervals or composed functions), in order to attain the same quality for the
remainder, TMs need a much higher polynomial degree, more computation time, or they
have to be applied over many subintervals, which favors the usage of CMs.

No f(x), I , n CMs Interpolation TMs
CM1 bound CM2 bound Exact bound Interp. bound Exact bound TM bound Exact bound

1 sin(x), [3, 4], 10 1.19 · 10
−14

1.19 · 10
−14 1.13 · 10−14

1.19 · 10
−14 1.13 · 10−14 1.22 · 10−11 1.16 · 10−

2 arctan(x), [−0.25, 0.25], 15 7.89 · 10
−15

7.89 · 10
−15 7.95 · 10−17

7.89 · 10
−15 7.95 · 10−17 2.58 · 10−10 3.24 · 10−

3 arctan(x), [−0.9, 0.9], 15 5.10 · 10
−3

5.10 · 10
−3 1.76 · 10−8

5.10 · 10
−3 1.76 · 10−8 1.67 · 102 5.70 · 10

4 exp(1/ cos(x)), [0, 1], 14 6.69 · 10−7
5.22 · 10

−7 4.95 · 10−7 0.11 6.10 · 10−7 9.06 · 10−3 2.59 · 10

5
exp(x)

log(2+x) cos(x)
, [0, 1], 15 1.70 · 10−8

9.11 · 10
−9 2.21 · 10−9 0.18 2.68 · 10−9 1.18 · 10−3 3.38 · 10

6 sin(exp(x)),[−1, 1], 10 4.10 · 10
−6 9.47 · 10−5 3.72 · 10−6 4.42 · 10−3 3.72 · 10−6 2.96 · 10−2 1.55 · 10

7 tanh(x + 0.5) − tanh(x − 0.5), [−1, 1], 10 8.48 · 10−3
1.75 · 10

−3 4.88 · 10−7 8.48 · 10−3 4.88 · 10−7 8.68 2.96 · 10

8
√

x + 1.0001, [−1, 0], 10 3.64 · 10
−2

3.64 · 10
−2 3.64 · 10−2 3.64 · 10−2 3.64 · 10−2 0.11 0.11

9
√

x + 1.0001 · sin(x), [−1, 0], 10 3.10 · 10
−2 3.32 · 10−2 3.08 · 10−2 3.21 · 1033 3.08 · 10−2 0.12 9.83 · 10

10 1
1+4x

2 , [−1, 1], 10 +∞ 1.13 · 10
−2 6.17 · 10−3 1.50 · 107 4.95 · 10−3 +∞ 8.20 · 10

Table 1: Examples of bounds obtained by several methods
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7 Conclusion and future work

We introduced two approaches for computing “Chebyshev interpolation models”, a tool
which is potentially useful in various rigorous computing applications. Currently, they al-
ways achieve smaller remainders than Taylor models but require nevertheless more com-
puting time in some cases.

This work is preliminary, in two senses. First, we did not address in this paper the oppor-
tunity to use Chebyshev truncated series instead of Chebyshev interpolation polynomials.
Actually, this approach is a work in progress and seems very promising since the quality
of the remainder should remain at least as good as the one provided by CM and the com-
plexity of basic bricks computations should be lowered. This issue of complexity has to
be addressed if we want CMs to replace TMs in most of univariate applications. The tech-
niques developed in [27, 2] could prove useful to achieve this goal. Secondly, we address the
computation of such models for univariate functions only. A long-term project of ours is to
extend these methods to the multivariate case.

The methods presented in this paper should be available in the months to come in the
Sollya1 tool.
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