456 research outputs found

    Insensitive, maximum stable allocations converge to proportional fairness

    Get PDF
    We describe a queueing model where service is allocated as a function of queue sizes. We consider allocations policies that are insensitive to service requirements and have a maximal stability region. We take a limit where the queueing model become congested. We study how service is allocated under this limit. We demonstrates that the only possible limit allocation is one that maximizes a proportionally fair optimization problem.Comment: 9 page

    Simulation comparison of RED and REM

    Get PDF
    We propose earlier an optimization based low control for the Internet called Random Exponential Marking (REM). REM consists of a link algorithm, that probabilistically marks packets inside the network, and a source algorithm, that adapts source rate to observed marking. The marking probability is exponential in a link congestion measure, so that the end-to-end marking probability is exponential in a path congestion measure. Because of the finer measure of congestion provided by REM, sources do not constantly probe the network for spare capacity, but settle around a globally optimal equilibrium, thus avoiding the perpetual cycle of sinking into and recovering from congestion. In this paper we compare the performance of REM with Reno over RED through simulation

    Optimization flow control with Newton-like algorithm

    Get PDF
    We proposed earlier an optimization approach to reactive flow control where the objective of the control is to maximize the aggregate utility of all sources over their transmission rates. The control mechanism is derived as a gradient projection algorithm to solve the dual problem. In this paper we extend the algorithm to a scaled gradient projection. The diagonal scaling matrix approximates the diagonal terms of the Hessian and can be computed at individual links using the same information required by the unscaled algorithm. We prove the convergence of the scaled algorithm and present simulation results that illustrate its superiority to the unscaled algorithm

    A distributed algorithm for wireless resource allocation using coalitions and the Nash bargaining solution

    Get PDF

    Wireless schedulers with future sight via real-time 3D environment mapping

    Get PDF

    CA-AQM: Channel-Aware Active Queue Management for Wireless Networks

    Get PDF
    In a wireless network, data transmission suffers from varied signal strengths and channel bit error rates. To ensure successful packet reception under different channel conditions, automatic bit rate control schemes are implemented to adjust the transmission bit rates based on the perceived channel conditions. This leads to a wireless network with diverse bit rates. On the other hand, TCP is unaware of such {\em rate diversity} when it performs flow rate control in wireless networks. Experiments show that the throughput of flows in a wireless network are driven by the one with the lowest bit rate, (i.e., the one with the worst channel condition). This does not only lead to low channel utilization, but also fluctuated performance for all flows independent of their individual channel conditions. To address this problem, we conduct an optimization-based analytical study of such behavior of TCP. Based on this optimization framework, we present a joint flow control and active queue management solution. The presented channel-aware active queue management (CA-AQM) provides congestion signals for flow control not only based on the queue length but also the channel condition and the transmission bit rate. Theoretical analysis shows that our solution isolates the performance of individual flows with diverse bit rates. Further, it stabilizes the queue lengths and provides a time-fair channel allocation. Test-bed experiments validate our theoretical claims over a multi-rate wireless network testbed

    On the Throughput Allocation for Proportional Fairness in Multirate IEEE 802.11 DCF

    Full text link
    This paper presents a modified proportional fairness (PF) criterion suitable for mitigating the \textit{rate anomaly} problem of multirate IEEE 802.11 Wireless LANs employing the mandatory Distributed Coordination Function (DCF) option. Compared to the widely adopted assumption of saturated network, the proposed criterion can be applied to general networks whereby the contending stations are characterized by specific packet arrival rates, Ī»s\lambda_s, and transmission rates RdsR_d^{s}. The throughput allocation resulting from the proposed algorithm is able to greatly increase the aggregate throughput of the DCF while ensuring fairness levels among the stations of the same order of the ones available with the classical PF criterion. Put simply, each station is allocated a throughput that depends on a suitable normalization of its packet rate, which, to some extent, measures the frequency by which the station tries to gain access to the channel. Simulation results are presented for some sample scenarios, confirming the effectiveness of the proposed criterion.Comment: Submitted to IEEE CCNC 200
    • ā€¦
    corecore