25,703 research outputs found

    Efficient heuristic algorithms for location of charging stations in electric vehicle routing problems

    Get PDF
    Indexación: Scopus.This work has been partially supported by CONICYT FONDECYT by grant 11150370, FONDEF IT17M10012 and the “Grupo de Logística y Transporte” at the Universidad del Bío-Bío.. This support is gratefully acknowledged.Eco-responsible transportation contributes at making a difference for companies devoted to product delivery operations. Two specific problems related to operations are the location of charging stations and the routing of electric vehicles. The first one involves locating new facilities on potential sites to minimise an objective function related to fixed and operational opening costs. The other one, electric vehicle routing problem, involves the consolidation of an electric-type fleet in order to meet a particular demand and some guidelines to optimise costs. It is determined by the distance travelled, considering the limited autonomy of the fleet, and can be restored by recharging its battery. The literature provides several solutions for locating and routing problems and contemplates restrictions that are closer to reality. However, there is an evident lack of techniques that addresses both issues simultaneously. The present article offers four solution strategies for the location of charging stations and a heuristic solution for fleet routing. The best results were obtained by applying the location strategy at the site of the client (relaxation of the VRP) to address the routing problem, but it must be considered that there are no displacements towards the recharges. Of all the other three proposals, K-means showed the best performance when locating the charging stations at the centroid of the cluster. © 2012-2018. National Institute for R and D in Informatics.https://sic.ici.ro/wp-content/uploads/2018/03/Art.-8-Issue-1-2018-SIC.pd

    Electric Vehicle Charging Station Placement: Formulation, Complexity, and Solutions

    Get PDF
    To enhance environmental sustainability, many countries will electrify their transportation systems in their future smart city plans. So the number of electric vehicles (EVs) running in a city will grow significantly. There are many ways to re-charge EVs' batteries and charging stations will be considered as the main source of energy. The locations of charging stations are critical; they should not only be pervasive enough such that an EV anywhere can easily access a charging station within its driving range, but also widely spread so that EVs can cruise around the whole city upon being re-charged. Based on these new perspectives, we formulate the Electric Vehicle Charging Station Placement Problem (EVCSPP) in this paper. We prove that the problem is non-deterministic polynomial-time hard. We also propose four solution methods to tackle EVCSPP and evaluate their performance on various artificial and practical cases. As verified by the simulation results, the methods have their own characteristics and they are suitable for different situations depending on the requirements for solution quality, algorithmic efficiency, problem size, nature of the algorithm, and existence of system prerequisite.Comment: Submitted to IEEE Transactions on Smart Grid, revise

    EV charging stations and RES-based DG: A centralized approach for smart integration in active distribution grids

    Get PDF
    Renewable Energy Sources based (RES-based) Dispersed Generation (DG) and Electrical Vehicles (EVs) charging systems diffusion is in progress in many Countries around the word. They have huge effects on the distribution grids planning and operation, particularly on MV and LV distribution grids. Many studies on their impact on the power systems are ongoing, proposing different approaches of managing. The present work deals with a real application case of integration of EVs charging stations with ES-based DG. The final task of the integration is to be able to assure the maximum utilization of the distribution grid to which both are connected, without any upgrading action, and in accordance with Distribution System Operators (DSOs) needs. The application of the proposed approach is related to an existent distribution system, owned by edistribuzione, the leading DSO in Italy. Diverse types of EVs supplying stations, with diverse diffusion scenarios, have been assumed for the case study; various Optimal Power Flow (OPF) models, based on diverse objective functions, reflecting DSO necessities, have been applied and tried. The obtained results demonstrate that a centralized management approach by the DSO, could assure the respect of operation limits of the system in the actual asset, delaying or avoiding upgrading engagements and charges
    • …
    corecore