37,239 research outputs found

    Modeling Evolutionary Dynamics of Lurking in Social Networks

    Full text link
    Lurking is a complex user-behavioral phenomenon that occurs in all large-scale online communities and social networks. It generally refers to the behavior characterizing users that benefit from the information produced by others in the community without actively contributing back to the production of social content. The amount and evolution of lurkers may strongly affect an online social environment, therefore understanding the lurking dynamics and identifying strategies to curb this trend are relevant problems. In this regard, we introduce the Lurker Game, i.e., a model for analyzing the transitions from a lurking to a non-lurking (i.e., active) user role, and vice versa, in terms of evolutionary game theory. We evaluate the proposed Lurker Game by arranging agents on complex networks and analyzing the system evolution, seeking relations between the network topology and the final equilibrium of the game. Results suggest that the Lurker Game is suitable to model the lurking dynamics, showing how the adoption of rewarding mechanisms combined with the modeling of hypothetical heterogeneity of users' interests may lead users in an online community towards a cooperative behavior.Comment: 13 pages, 5 figures. Accepted at CompleNet 201

    Characterizing user behavior in online social networks: Analysis of the regular use of Facebook

    Get PDF
    The analysis of user behaviour in online social networks (OSNs) is one of the important research interests related to human-computer interactions. OSNs gives a large space to share news with no limits around the world and allows user to benefit from properties of this interactive and dynamic system. The study of user behaviour on a social and popular platform characterized by the use of new technologies requires to understand and the analysis of collective behaviour on Facebook. This paper aims to analyse the usage patterns in OSNs using the visible interactions of Facebook, by studying the time of activity and the evolution of human behaviour through a process of detection of visible and non-volatile interactions. In the first step, we perform a data collection process based on breadth first search algorithm (BFS) and semi-supervised crawler agent. In the second step, we build an interaction quantification process to measure users’ activities and analysis related time series. The study of the frequency of periodic use has shown that the communities monitored follow a weekly rhythm that decreases over time to reach a frequency of daily use, which reflects a stability of activities and a case of dependency of use

    Measuring, Characterizing, and Detecting Facebook Like Farms

    Get PDF
    Social networks offer convenient ways to seamlessly reach out to large audiences. In particular, Facebook pages are increasingly used by businesses, brands, and organizations to connect with multitudes of users worldwide. As the number of likes of a page has become a de-facto measure of its popularity and profitability, an underground market of services artificially inflating page likes, aka like farms, has emerged alongside Facebook's official targeted advertising platform. Nonetheless, there is little work that systematically analyzes Facebook pages' promotion methods. Aiming to fill this gap, we present a honeypot-based comparative measurement study of page likes garnered via Facebook advertising and from popular like farms. First, we analyze likes based on demographic, temporal, and social characteristics, and find that some farms seem to be operated by bots and do not really try to hide the nature of their operations, while others follow a stealthier approach, mimicking regular users' behavior. Next, we look at fraud detection algorithms currently deployed by Facebook and show that they do not work well to detect stealthy farms which spread likes over longer timespans and like popular pages to mimic regular users. To overcome their limitations, we investigate the feasibility of timeline-based detection of like farm accounts, focusing on characterizing content generated by Facebook accounts on their timelines as an indicator of genuine versus fake social activity. We analyze a range of features, grouped into two main categories: lexical and non-lexical. We find that like farm accounts tend to re-share content, use fewer words and poorer vocabulary, and more often generate duplicate comments and likes compared to normal users. Using relevant lexical and non-lexical features, we build a classifier to detect like farms accounts that achieves precision higher than 99% and 93% recall.Comment: To appear in ACM Transactions on Privacy and Security (TOPS

    Are All Successful Communities Alike? Characterizing and Predicting the Success of Online Communities

    Full text link
    The proliferation of online communities has created exciting opportunities to study the mechanisms that explain group success. While a growing body of research investigates community success through a single measure -- typically, the number of members -- we argue that there are multiple ways of measuring success. Here, we present a systematic study to understand the relations between these success definitions and test how well they can be predicted based on community properties and behaviors from the earliest period of a community's lifetime. We identify four success measures that are desirable for most communities: (i) growth in the number of members; (ii) retention of members; (iii) long term survival of the community; and (iv) volume of activities within the community. Surprisingly, we find that our measures do not exhibit very high correlations, suggesting that they capture different types of success. Additionally, we find that different success measures are predicted by different attributes of online communities, suggesting that success can be achieved through different behaviors. Our work sheds light on the basic understanding of what success represents in online communities and what predicts it. Our results suggest that success is multi-faceted and cannot be measured nor predicted by a single measurement. This insight has practical implications for the creation of new online communities and the design of platforms that facilitate such communities.Comment: To appear at The Web Conference 201

    Characterizing web pornography consumption from passive measurements

    Get PDF
    Web pornography represents a large fraction of the Internet traffic, with thousands of websites and millions of users. Studying web pornography consumption allows understanding human behaviors and it is crucial for medical and psychological research. However, given the lack of public data, these works typically build on surveys, limited by different factors, e.g. unreliable answers that volunteers may (involuntarily) provide. In this work, we collect anonymized accesses to pornography websites using HTTP-level passive traces. Our dataset includes about 15 00015\,000 broadband subscribers over a period of 3 years. We use it to provide quantitative information about the interactions of users with pornographic websites, focusing on time and frequency of use, habits, and trends. We distribute our anonymized dataset to the community to ease reproducibility and allow further studies.Comment: Passive and Active Measurements Conference 2019 (PAM 2019). 14 pages, 7 figure

    Characterizing interactions in online social networks during exceptional events

    Get PDF
    Nowadays, millions of people interact on a daily basis on online social media like Facebook and Twitter, where they share and discuss information about a wide variety of topics. In this paper, we focus on a specific online social network, Twitter, and we analyze multiple datasets each one consisting of individuals' online activity before, during and after an exceptional event in terms of volume of the communications registered. We consider important events that occurred in different arenas that range from policy to culture or science. For each dataset, the users' online activities are modeled by a multilayer network in which each layer conveys a different kind of interaction, specifically: retweeting, mentioning and replying. This representation allows us to unveil that these distinct types of interaction produce networks with different statistical properties, in particular concerning the degree distribution and the clustering structure. These results suggests that models of online activity cannot discard the information carried by this multilayer representation of the system, and should account for the different processes generated by the different kinds of interactions. Secondly, our analysis unveils the presence of statistical regularities among the different events, suggesting that the non-trivial topological patterns that we observe may represent universal features of the social dynamics on online social networks during exceptional events
    • …
    corecore