114 research outputs found

    Analyzing peer-to-peer traffic across large networks

    Get PDF

    Willage: A Two-Tiered Peer-to-Peer Resource Sharing Platform for Wireless Mesh Community Networks

    Get PDF
    The success of experiences such as Seattle and Houston Wireless has attracted the attention on the so called wireless mesh community networks. These are wireless multihop networks spontaneously deployed by users willing to share communication resources. Due to the community spirit characterizing such networks, it is likely that users will be willing to share other resources besides communication resources, such as data, images, music, movies, disk quotas for distributed backup, and so on. In other words, it is expected that peer-to-peer applications will be deployed in such type of networks. In this paper we propose Willage, a platform for resource localization in wireless mesh community networks with mobile users. The platform is based on a two-tiered architecture: resources are made available at the lower tier, which is composed of mobile terminals, whereas information on their localization is managed at the upper layer, which is composed of wireless mesh routers. We also introduce Georoy, an algorithm for the efficient retrieval of the information on resource localization based on the Viceroy algorithm. Simulation results show that Willage achieves its goal of enabling efficient and scalable peer-to-peer resource sharing in wireless mesh community networks

    Implications of Selfish Neighbor Selection in Overlay Networks

    Full text link
    In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230); National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 020206

    A framework for the dynamic management of Peer-to-Peer overlays

    Get PDF
    Peer-to-Peer (P2P) applications have been associated with inefficient operation, interference with other network services and large operational costs for network providers. This thesis presents a framework which can help ISPs address these issues by means of intelligent management of peer behaviour. The proposed approach involves limited control of P2P overlays without interfering with the fundamental characteristics of peer autonomy and decentralised operation. At the core of the management framework lays the Active Virtual Peer (AVP). Essentially intelligent peers operated by the network providers, the AVPs interact with the overlay from within, minimising redundant or inefficient traffic, enhancing overlay stability and facilitating the efficient and balanced use of available peer and network resources. They offer an “insider‟s” view of the overlay and permit the management of P2P functions in a compatible and non-intrusive manner. AVPs can support multiple P2P protocols and coordinate to perform functions collectively. To account for the multi-faceted nature of P2P applications and allow the incorporation of modern techniques and protocols as they appear, the framework is based on a modular architecture. Core modules for overlay control and transit traffic minimisation are presented. Towards the latter, a number of suitable P2P content caching strategies are proposed. Using a purpose-built P2P network simulator and small-scale experiments, it is demonstrated that the introduction of AVPs inside the network can significantly reduce inter-AS traffic, minimise costly multi-hop flows, increase overlay stability and load-balancing and offer improved peer transfer performance

    Characterization of P2P Systems

    Full text link
    Understanding existing systems and devising new P2P techniques relies on having access to representative models derived from empirical observations of existing systems. However, the large and dynamic nature of P2P systems makes capturing accurate measurements challenging. Because there is no central repository, data must b

    Swarming Overlay Construction Strategies

    Get PDF
    Swarming peer-to-peer systems play an increasingly instrumental role in Internet content distribution. It is therefore important to better understand how these systems behave in practice. Recent research efforts have looked at various protocol parameters and have measured how they affect system performance and robustness. However, the importance of the strategy based on which peers establish connections has been largely overlooked. This work utilizes extensive simulations to examine the default overlay construction strategy in BitTorrent systems. Based on the results, we identify a critical parameter, the maximum allowable number of outgoing connections at each peer, and evaluate its impact on the robustness of the generated overlay. We find that there is no single optimal value for this parameter using the default strategy. We then propose an alternative strategy that allows certain new peer connection requests to replace existing connections. Further experiments with the new strategy demonstrate that it outperforms the default one for all considered metrics by creating an overlay more robust to churn. Additionally, our proposed strategy exhibits optimal behavior for a well-defined value of the maximum number of outgoing connections, thereby removing the need to set this parameter in an ad-hoc manner

    Random graphs as models of hierarchical peer-to-peer networks

    Get PDF
    Abstract This paper proposes the development and application of random graphs-based performance evaluation techniques to understand design trade-offs for hierarchical unstructured peer-to-peer networks. In particular, the connections between lower and higher level peers (that are known as leaves and ultra-peers in the Gnutella jargon) are modeled as a bipartite random graph while the overlay network used by ultra-peers to forward queries is modeled as a generalized random graph. Both the random graph models consider peers of either level as partitioned into classes; this feature is included in the model description to consider the mismatch between the logical topology of the application and the physical deployment of peers throughout the Internet. To assign realistic values to the input model parameters and to validate the model predictions we obtained snapshots of the Gnutella application topology at both levels and conducted simulation experiments on these snapshots. The paper highlights a few exploitations of the modeling technique with a particular focus on the evaluation of the impact of locality awareness on user and network performance measures
    • 

    corecore