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Abstract—The use of peer-to-peer (P2P) applications is growing
dramatically, particularly for sharing large video/audio files and
software. In this paper, we analyze P2P traffic by measuring flow-
level information collected at multiple border routers across a large
ISP network, and report our investigation of three popular P2P sys-
tems—FastTrack, Gnutella, and Direct-Connect. We characterize
the P2P trafffic observed at a single ISP and its impact on the
underlying network. We observe very skewed distribution in the
traffic across the network at different levels of spatial aggregation
(IP, prefix, AS). All three P2P systems exhibit significant dynamics
at short time scale and particularly at the IP address level. Still,
the fraction of P2P traffic contributed by each prefix is more stable
than the corresponding distribution of either Web traffic or overall
traffic. The high volume and good stability properties of P2P traffic
suggests that the P2P workload is a good candidate for being man-
aged via application-specific layer-3 traffic engineering in an ISP’s
network.

Index Terms—TFile sharing, peer-to-peer, P2P, traffic character-
ization, traffic measurement.

1. INTRODUCTION

HE use of peer-to-peer (P2P) applications is growing dra-

matically, particularly for sharing large video/audio files
and software. The stunning growth and the bandwidth intensive
nature of such applications suggests that P2P traffic can have
significant impact on the underlying network. It is therefore im-
portant to understand and characterize this traffic in terms of
end-system behavior and network impact in order to develop
workload models and to provide insights into network traffic
engineering and capacity planning.

P2P traffic can be broadly classified into two categories:
signaling and data transfer. Both types of traffic need to be
measured in order to gain a solid understanding of P2P system
behavior. The signaling traffic includes TCP connection setup,
search queries and query replies. Early P2P systems like
Gnutella used controlled flooding to propagate queries to all
the P2P hosts—this can lead to bandwidth scaling problems.
Newer systems such as FastTrack and DirectConnect and newer
versions of Gnutella perform more targeted forwarding to only
a subset of hosts (we shall describe this later in the paper), and
are much more bandwidth efficient in terms of signaling.

The leading content shared in the P2P systems, such as
audio and video files, tend to be large in size, e.g., 4.8 MB
for a 5-min-long 128-kb/s MP3 audio clip and 450 MB for
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an hour-long MPEG-4 video clip encoded at 500 kb/s. In
comparison, typical query and response messages are much
smaller in size, on the order of several hundred bytes. Hence,
the actual data transfer is likely to be the dominant component
of the total traffic in such systems, and have significant impact
on the underlying network.

Previous research [2], [17], [18], [31] has focused almost ex-
clusively on P2P signaling traffic, and on the public-domain
Gnutella and Napster systems. These projects all gather P2P sig-
naling traffic by setting up P2P crawlers on the Internet. The
crawler joins the P2P network and maintains active TCP con-
nections with a number of hosts (called neighbors). It itera-
tively builds a list of hosts in the system by communicating with
known hosts, and adding newly discovered hosts to its known
list. It logs all the messages that it exchanges with other hosts.
Since the data collection depends on the number of active TCP
connections that the crawler maintains, such an approach is not
suitable for conducting large scale data gathering. In addition,
this “active probing” approach makes it a bandwidth-intensive
proposition to map large P2P systems which can have several
million hosts.

The following are a number of interesting research questions
that have implications for P2P system design and traffic
engineering.

* How is the P2P traffic distributed across the Internet? The
spatial distribution characteristics, for instance, can influ-
ence traffic management decisions, such as identifying po-
tential hot spots for capacity planning.

* What are the characteristics of the application-level P2P
network connectivity? The connectivity behavior can
yield insights toward developing appropriate protocols
for searching and for fetching objects in such a system.

* How dynamic are the P2P systems, both temporally and
spatially? Understanding this can yield clues for devel-
oping systems with good performance properties in terms
of scalability, reliability and reachability.

This paper performs a systematic characterization of P2P
traffic and its impact on the underlying network, as a first step
to answering the questions above. Complementing the earlier
techniques, in this paper, we present a novel approach for
conducting large scale nonintrusive measurement of P2P traffic
covering both signaling traffic and actual data traffic, that can
be used for mapping both proprietary and nonproprietary P2P
systems. We focus on the P2P traffic observed at a large ISP,
and aim at characterizing the workload and understanding
its impact on the underlying ISP network. This is of interest
to service providers because the P2P traffic has increased
dramatically during the last couple of years and accounts for a
significant portion of the total traffic observed at large ISP’s.
The workload characterization will enable service providers to
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better cope with such traffic through suitable traffic engineering
measures such as identifying heavy hitter network prefixes for
private route peering arrangements, pricing, rate limiting, and
routing.

We extracted and analyzed 800 million flow-level records
collected at multiple border routers across the ISP’s network
over a period of three months. Our study focused on three pop-
ular P2P systems—FastTrack [23], Gnutella [20], and Direct-
Connect [26]. We had five major observations.

i) All three systems exhibit significant increases in both
traffic volume and number of users, even across consec-
utive months.

ii) The traffic volume generated by individual hosts is ex-
tremely variable—less than 10% of the IPs contribute
around 99% of the total traffic volume.

iii) The P2P traffic distributions for traffic volume, connec-
tivity, ontime (to be defined), and average bandwidth
usage are extremely skewed; but they do not fit well with
power law distributions.

iv) All three P2P systems exhibit a high level of system dy-
namics—only a small fraction of hosts are persistent over
long time periods.

v) The fraction of P2P traffic contributed by each network
prefix remains relatively unchanged and more stable than
the corresponding distribution of either Web traffic or
overall traffic over the time period of one month. This is
good news for ISPs, as the high volume and good stability
properties of P2P traffic indicates that application-spe-
cific layer-3 traffic engineering may be a promising way
to manage the P2P workload in an ISP’s network.

An early version of this work appeared in the Proceedings of
the ACM SIGCOMM Internet Measurement Workshop, 2002.
Parallel [45] and subsequent [46] research also consider P2P
data traffic. These work are based on data gathered from the
edge networks and provide a view of local P2P usage. Our work
in contrast provides a complementary “backbone view” from a
large tier-1 ISP perspective, by gathering data at multiple border
routers across the ISP.

The remainder of this paper is organized as follows. Section II
presents our methodology for analyzing P2P traffic. Section III
describes the metrics we use for traffic characterization. We pro-
vide an overview of traffic data for the three P2P systems in
Section IV and examine the P2P system dynamics in Section V.
Section VI explores two key questions related to modeling P2P
workload and Section VII compares P2P traffic with Web traffic.
We summarize the main results in Section VIII and conclude the
paper in Section IX.

II. METHODOLOGY

We focus on three popular P2P systems—the open source
Gnutella (the network accessed by client interfaces such
as Bearshare and Limewire [27], [28]), and the proprietary
Fast-Track (better known by the popular client names KaZaA
and Grokster [23], [25]) and DirectConnect systems. At the
time our measurements were conducted, the popular Morpheus
[24] file swapping service was using the FastTrack system,
and our data includes the Morpheus traffic as well. We first
highlight some key features of these systems and then outline
our data collection and measurement methodology.
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A. Popular P2P Applications

FastTrack, Gnutella, and DirectConnect are all decentral-
ized, self-organizing file sharing systems with data and index
information (metadata for searching) distributed over a set
of endhosts or peers, each of which can be both a client and
a server. Hosts can join and leave frequently, and organize
in a distributed fashion into an application-level overlay via
point-to-point application-level connections between a host
and a set of other hosts (its neighbors). At the time our ex-
periments were conducted, all the communications occurred
predominantly over default, well-known ports. The process of
obtaining a file can be broadly divided into two phases. First, a
host uses the P2P protocol to search the hosts in the P2P system
for a particular resource, receives one or more responses, and
identifies one or more target hosts from which to download
that resource. The search queries as well as the responses are
transmitted via the overlay connections using protocol-specific
application level routing. The details of how the signaling
is propagated through the overlay is protocol-dependent. In
Gnutella, all hosts are considered equal and participate in query
processing. A host initiates a query by flooding it to all its
neighbors in the overlay. The neighboring hosts in turn, flood
to their neighbors, using a scoping mechanism to control the
query flood. In contrast, for both FastTrack and DirectConnect,
queries are forwarded to and handled by only a subset of
special hosts (called SuperNodes in FastTrack and Hubs in
DirectConnect). A host transmits an index of its content to the
“special host” to which it is connected. The special host then
uses the corresponding P2P protocol to forward the query to
other such hosts in the system. Newer versions of the Gnutella
protocol adopt a similar approach with such special hosts called
Reflectors, Defenders, or Ultrapeers [1], [16].

In the second phase, the requesting host directly contacts the
target host, typically using HTTP (the target host runs has a
HTTP server listening by default on a known, protocol-specific
port), to get the requested resource. Some newer systems, such
as FastTrack and Gnutella, use file swarming—a file is down-
load in chunks from multiple hosts. The term P2P network has
been typically used in existing works to refer to the applica-
tion-level peer-to-peer connections used for signalling among
the hosts, and does not consider the download path followed by
the actual data.

B. Measurement Approach

Any large-scale measurement effort has to be efficient and
scalable in terms of network resource usage, should not impact
the system being measured, and should be able to capture the
behavior and system dynamics in sufficient detail. The highly
decentralized, self-organizing nature of a P2P system, the large
number of hosts involved, the transient nature of peer member-
ship, and the closed proprietary nature of some of the most pop-
ular P2P systems in existence make it a challenging proposi-
tion to gather information for mapping and characterizing such
systems in terms of network topology, generated traffic, and
dynamic behavior.

In this study, we adopt a passive measurement approach, in-
volving offline analysis of flow-level data gathered from mul-
tiple routers across a large tier-1 ISP’s backbone. We measure
each P2P system at several levels of granularity: IP address, net-
work prefix, and autonomous system (AS). IP level information
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is interesting as it provides a fine-grained view of the load dis-
tribution across the network. Note that in general there may not
be a one-to-one mapping between each host and an a unique
valid IP address, because of the use of dynamically assigned
IP addresses, network address translation (NAT), and forward
proxies at the edge of the network. However, this has less effect
on our analysis results since we are interested more in charac-
terizing the overall traffic pattern and the continuous activity for
the hosts during each single day period instead of analyzing the
traffic from individual hosts across days. Also, since each IP
address maps to a unique interface (subnet) at the edge of the
network, IP level analysis is still useful for understanding the
overall traffic distribution from the network perspective.

As an intermediate level of granularity, we use the network
routing prefix for characterizing P2P traffic patterns. Prefixes
are the unit of routing at the IP layer, so understanding traffic
at this level is important for ISP traffic engineering. Also, the
prefix level aggregation, by grouping IP addresses that are topo-
logically close together from a network routing viewpoint, en-
ables capturing locality characteristics in the P2P system. At the
AS level, we identify an AS by its unique public AS number.
The dynamic assignment of IP addresses is less of an issue for
the prefix and AS level aggregations since one would expect a
host’s new IP address to fall in the same prefix and originating
AS as the old one.

We collect router level data using Cisco’s NetFlow services.
NetFlow [34] enables accumulation of traffic flow statistics. A
flow is defined to be an unidirectional sequence of packets be-
tween a particular source and destination IP address pair. The
source and destination IP address pair, transport layer applica-
tion port numbers, IP protocol type, type of service (ToS), and
the input interface identifier are used to uniquely identify a flow.
For each flow, NetFlow maintains a record in the router cache,
containing a number of fields including the source and desti-
nation IP addresses, source and destination BGP routing pre-
fixes, source and destination ASes, source and destination port
numbers, the protocol type, type of service, flow starting and
finishing timestamps, number of bytes and number of packets
transmitted. The BGP prefix and AS information are obtained
by running longest prefix matching on the IP addresses with pre-
fixes in the router’s forwarding table entries. A flow is expired
from the cache and a corresponding flow record transmitted via
UDP to a NetFlow collector machine for storage, under one of
the following conditions: there is no activity between the corre-
sponding two endpoints for a certain period of time, the router’s
cache gets filled up, or the flow is active over long periods of
time (by default, a flow is expired if it is active for more than
30 minutes).

C. Advantages and Limitations

The following are some key advantages of our passive net-
work-wide measurement approach over earlier efforts that use
active probing. First, our approach does not require knowledge
about the P2P protocol, beyond port number information. This
is a clear advantage for studying proprietary protocols such as
FastTrack. The same would be far more difficult to do using
an active measurement approach which would require a P2P
crawler to actually join the P2P network, and therefore involve

intimate knowledge of the P2P protocol itself and of any en-
cryption being used. A caveat is that if the application traffic is
transmitted over dynamically changing set of ports, port based
identification becomes very difficult.

Second, the approach is nonintrusive and all the traffic data
can be collected without interfering with or impacting the peers
themselves. We can conduct more complete measurements of
large systems over long periods of time which would be prohib-
itively expensive in an active measurement based approach. As
a result, we can get a more complete view of the P2P host dis-
tribution and their traffic patterns. From the underlying network
viewpoint, the flow data collection does involve additional over-
heads, as the router cards have to gather flow-level records and
ship these to a collection server. However, the usefulness of such
measurements as inputs to a range of practical applications such
performance monitoring, traffic engineering, and capacity pro-
visioning, is driving ISPs to increasingly deploy measurement
infrastructures such as flow and packet monitors in their net-
works. In a way, therefore, the network is engineered to handle
any additional overhead of such netflow collection.

Third, our approach gathers information on both the P2P sig-
naling traffic as well as the actual data download traffic. Given
that these systems are being used to download large files, it is
important to be able to capture and characterize the actual data
traffic. This is a key distinction from prior work which was able
to profile the signaling traffic only.

Finally, by controlling which routers the data is gathered
from, our approach is conducive to determining the impact
of P2P traffic on certain regions of the network—e.g., the
total internal P2P traffic or the total incoming or outgoing
P2P traffic for a single ISP. Such localized analysis capability
would be important and desirable, for instance, for local traffic
engineering and provisioning at an ISP. In this paper, we focus
on the data gathered from border routers at the peering links of
the ISP to get a view of the inter-ISP P2P traffic.

While flow-based analysis provides us with valuable insights
into P2P traffic characteristics, it has some limitations. First,
the data is aggregated at the flow level. We are not able to ob-
tain application-level details such as the actual P2P messages
exchanged between peers, or the specific files being requested
and actually downloaded. Given the recent trend toward secure
communication by some P2P systems (e.g., FastTrack encrypts
all signaling) to prevent unauthorized clients from accessing the
network, this problem will be common to all third-party based
evaluations of P2P systems.

Second, we may not capture the complete flow of traffic. In
this work, we gathered netflow data in the backbone of a tier-1
ISP, from a significant fraction of the border routers that are
the conduits for traffic flowing to/from other tier-1 and tier-2
ISPs. We speculate that we observed a significant portion of the
traffic from other top-tier ISPs entering or leaving the target ISP
for those three P2P systems. We intend to periodically conduct
the analysis on data sets gathered from more routers, as net-
flow deployment across the ISP increases. Such an exercise will
also capture an updated view of P2P traffic behavior and help in
tracking the evolution of this traffic.

Another potential issue is that, due to asymmetric IP routing,
we may see only one direction of the traffic between a given pair
of hosts. However, this is not a limitation for our measurements
which aims to understand the P2P traffic pattern and its impact
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at single ISP, and therefore is concerned only with the traffic
that is visible to that ISP.

III. CHARACTERIZATION METRICS

The goal of our study is to characterize P2P system behavior
with a view to understanding how these systems impact the
underlying network, and to gain insights into developing P2P
systems with superior performance. We are interested in the
following:

i) topology characterization—the distribution of P2P hosts
across the network, and the topology of the application-
level overlay connecting hosts;

ii) traffic characterization—the distribution of traffic vol-
umes transmitted or received by different hosts;

iii) dynamic behavior characterization—in theory, the dy-
namic nature of a P2P system distinguishes it from tra-
ditional distributed server systems. We are interested in
characterizing the dynamics observed in practice, e.g.,
how frequently hosts join and leave the system, how long
a host stays in the system, how active the “live” hosts are
during a certain period of time, etc.

We use the following metrics in our study. We shall use the
terms upstream and downstream, respectively, to refer to the
direction of traffic emanating from a host, and of traffic coming
into the host.

A. Host Distribution

We compute the number of unique IP addresses, prefixes, and
ASes participating in each P2P system in each one-day period
across several weeks spread over several months. This will in-
dicate the trends in the size of the three systems. Comparing
the measurement results at different levels of topological gran-
ularity, we can infer locality characteristics of the P2P hosts
distribution which can be used in traffic engineering and in de-
signing better P2P architectures.

B. Traffic Volume

Since P2P systems are mainly used for sharing audio/video
files and software, the transmitted file sizes are much larger
compared to traditional Web content size. To better understand
the P2P traffic patterns, we measure the traffic volume trans-
mitted between P2P hosts, and compute the aggregate data
transmitted or received by each IP address, prefix, and AS per
day.

C. Host Connectivity

For each aggregation level (IP, prefix, or AS), we compute
the total number of unique entities at the same aggregation level
that it communicates with (either transmits data to or receives
data from). The resulting distribution is used to characterize the
connectivity in the P2P network.

D. Traffic Pattern Over Time

We measure the aggregate traffic characteristics across time
for the different P2P systems. First, we would like to know how
many hosts participate in the P2P system and the traffic volume
transferred among hosts over a given time. We measure this by
dividing the entire data set into small time bins. For each bin, we
compute the number of unique entities (IPs, prefixes, or ASes)
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Fig. 1. The binning of netflow records.

that are participating in the P2P system and the traffic volume
transferred among them. It is possible that the starting time and
the finishing time of a single flow fall into two different bins.
In such a case, the traffic volume of this flow is divided into
multiple segments (one per bin) and the traffic volume of each
segment is assigned in proportion to the length of time that the
flow exists within a given bin. The traffic volume of a given bin
is the aggregate traffic volume of all the flow segments within
this bin. Suppose there are n flows f1, fo, ..., f,, that last over
m bins by, by, ..., by A given flow f; that spans from bin j to
bin k (j < k) is divided into &k — j + 1 segments s;;, . .., Sik.
Then, the traffic volume of bin b; (0 < [ < m) is computed as

Volume(b;) = Z Volume(s;;).
i=1

Fig. 1 illustrates an example of how we compute the traffic
volume for each bin. There are five flows fq,..., f5 that last

’ ’

in eight bins by, ..., bs. Flows are divided into segments. For
example, flow f; lasts in bins by and b5, and is divided into seg-
ments s11 and s1o. The traffic volume for bin b; is the summa-

tion of the traffic volume of segments s11, s21, and s3;.

E. Connection Duration and On-Time

We measure how long a host stays in the P2P system. We de-
fine a connection to correspond to the duration between a host
joining and leaving the P2P system. Because we cannot obtain
the information of a host connection from netflow records, we
approximate the starting time and finishing time of a host con-
nection using the time when the host starts to send or receive
data and the time when the host finishes sending or receiving
data. At a given time, the data transfer by a host may be spread
over multiple flows. Let f1 and f; (i # j) be two flows associ-
ated with the given host. Without loss of generality, we assume
that StartTime(f;) < StartTime(f;). We say f; and f; are
concurrent iff StartTime(f;) < FinishTime(f;) + 6§, where
6 is a threshold factor. Later, we shall show how to select the
appropriate value for 6.

The host connection duration is computed as the longest con-
secutive period that the host is transferring (either sending or
receiving) data. A connection U of a host can be represented by
a set of concurrent flows associated with it. A host may have
multiple connections over time, but there is no overlap in time
between any two connections of a host.

StartTime(c) = I}lin StartTime( f)
Ec

FinishTime(c) = r?ax FinishTime(f)
€c
Volume(c) = Z Volume( f)
fec

The length of the host connection duration tells us how long a
host stays in the P2P system once it joins. The on-time of a host
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TABLE 1
Netflow DATA SET OF P2P TRAFFIC OVER TCP

Date Protocol Number of | Total number of | Number of unique | Total traffic volume | Traffic volume per
records unique IPs IPs per day (GBytes/day) IP (MBytes/day)

9/10/2001 - Gnutella 37,853,281 718,464 197,445 211 22
9/15/2001 FastTrack 110,533,024 3,403,900 998,669 773 1.6
DirectConnect 595,606 22,852 6,244 48 15.4

10/9/2001 - Gnutella 49,649,348 823,532 247,114 272 22
10/13/2001 FastTrack 184,113,038 4,450,149 1,485,370 1,153 1.6
DirectConnect 566,740 23211 7,193 56 15.6

12/10/2001 - | Gnutella 69,578,723 887,520 236,954 242 2.0
12/16/2001 FastTrack 340,690,074 5,924,072 1,934,460 1,776 1.8
DirectConnect 701,712 29,925 7213 71 19.6
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characterizes how long the host stay in the P2P system during
a certain period of time. It is computed as the sum of all the
connection durations for a given host over a given time period.
Finally, note that our estimation of the on-time is conservative in
that if the host is present, but does not have any communication
with other peers over extended times, our measurement does
not include this idle time. From the network bandwidth usage
perspective, this estimation is more meaningful.

FE. Mean Bandwidth Usage

We would like to characterize the transmission bandwidth
usage (for P2P traffic) of individual hosts in a P2P system. Such
a characterization would enable network administrators to un-
derstand the bandwidth demand that hosts running P2P applica-
tions might impose on the network. In this study, we measure
the average bandwidth a host consumes once it joins the P2P
system. Note that this is an estimate of the average bandwidth,
as we may not capture all the traffic to and from a host. We
separately measure the upstream and downstream bandwidths
for each host. The upstream (or downstream) bandwidth is the
aggregated average bandwidth at which the host transmits (or
receives) data to (or from) other hosts in the P2P system. For a
given host h

_ Volumeg(h)

Bandwidthg(h) = OnTeR(h)

where subscript R is either upstream or downstream and
OnTimeg(h) is the total time that host h transmits (or re-
ceives) data (i.e., ¢ = 0) during a certain period of time.
This measure also gives us a lower bound on the bottleneck
bandwidth of the hosts. Note that another relevant bandwidth
measure here would be the distribution of maximum bandwidth
usage for hosts in the P2P system. This would be useful, for
example, in estimating the burstable bandwidth demand that
may be imposed by the P2P system on the underlying network.
However, flow-level data only records the aggregate data
transmitted in the flow and the total flow duration, and does not
provide any information regarding potential short-time-scale
burstiness in the transmission bandwidths at the application
level. Using this coarse-grain information to estimate the
burstable bandwidth usage of a host across multiple overlap-
ping flows, can result in either under- or overestimations of
the actual peak. Determining accurate estimates of the peak
bandwidth usage will be part of future work.

IV. OVERVIEW OF P2P TRAFFIC

The flow records from multiple border routers interfaces
across the ISP backbone form the basis of our analysis. For
each P2P system, we extracted records that matched the
corresponding default application ports (source or destina-
tion), involving TCP traffic (none of the three P2P systems
uses UDP): 6346/6347 (Gnutella), 1214 (FastTrack), and
411/412 (DirectConnect). The data was collected for one
week each month between September and December, 2001.
The collected data is then processed to handle corruption and
loss effects as follows. We considered all the IP addresses
that are in the following ranges as invalid IP addresses:
10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, and
192.168.0.0-192.168.255.255. We eliminate records 1) for
which either the source or the destination is an invalid IP
address; 2) for which either the source or the destination IP
address does not match with any entries in the router forwarding
table; and 3) which either have a AS number in the range 64513
~ 65535 (valid public AS number ranges from 1 to 64512
[30]). We thereby eliminated 4% of the total flow records we
captured. During our study, we also noticed that the timestamps
of the netflow records are sometimes not consistent. This is
usually due to brief time periods where the clock on a given
linecard has not yet been slaved to the main router clock.
We corrected the timestamps by slaving the linecard clock to
the closest netflow records from interfaces on the main route
processor. Additionally, we eliminated a few netflow records
that have invalid timestamps. The final dataset consists of
around 800 million flow records.

Table I provides summary statistics for the P2P data set
obtained above. Among the three P2P systems, FastTrack is the
most popular in terms of both the number of hosts participating
in the P2P system and the average traffic volume (per day)
that is transferred among hosts. We collected 110 million,
184 million, and 341 million netflow records for FastTrack in
September, October, and December, 2001, respectively. There
were a total of 3.4 million unique IP addresses participating in
the FastTrack system during a six-day period in September with
an average of 1 million unique IP addresses participating in the
system each day. The average number of unique IP addresses
participating in the FastTrack system per day grows to 1.5
million in October (50% growth) and 1.9 million in December
(90% growth). In September, the average total data traffic
was 773 GB/day and the average data traffic contributed by
each individual IP address was 1.6 MB/day. While the average
total data traffic grows rapidly to 1.15 TB/day (50%growth)
in October and 1.78 TB/day (130% growth) in December, the
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Fig. 2. Host density: the distribution of the hosts participating in three P2P
systems per day (y-axis is in logscale).

average traffic volume contributed by an individual IP address
remains in the range of 1.6 ~ 1.8 MB/day across the months.
This indicates that the rapid growth of the P2P traffic is mainly
caused by the increasing number of hosts participating in the
system. Similar trends hold for Gnutella and DirectConnect.

Gnutella is the second most popular P2P system. Although
the number of IP addresses participating in Gnutella and the
total traffic volume transferred using Gnutella are smaller than
that of FastTrack, the average traffic volume contributed by an
individual IP address is similar (~2 MB/day) to that of Fast-
Track across the three months.

Compared to FastTrack and Gnutella, DirectConnect is a
more recent system and has a smaller user base. We collected
0.5 ~ 0.7 million flow records during the data gathering
week of each month, in which a total of 20 ~ 30 thousand IP
addresses participate. However, the average traffic volume con-
tributed by an individual IP address ranges from 15.4 MB/day
to 19.6 MB/day, which is much higher than the corresponding
values for FastTrack and Gnutella. As we shall see later, the
DirectConnect hosts tend to stay active longer than FastTrack
and Gnutella hosts. They also have higher average bandwidths
(both upstream and downstream) than the FastTrack and
Gnutella hosts.

A. Host Distribution

For each P2P system, we compute the number of unique IPs,
prefixes, and ASes observed every day across three months
(Fig. 2). The number of IP addresses participating in FastTrack
each day ranges from 0.5 million to 2 million. The average
daily figure increases slightly from September to December as
the total number of IPs participating in FastTrack increases.
This figure is 5 ~ 7 times that of Gnutella and 150 ~ 300
times that of DirectConnect. The number of unique prefixes
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Fig. 3. Cumulative distribution of traffic volume associated with IP addresses
ranked in decreasing order of volume, for September 14, 2001 (x-axis is in
logscale). Aggregate traffic observed for FastTrack on this day was 960 GB.

participating in FastTrack ranges from 17 ~ 26 thousand, and
the number of unique ASes ranges from 4 ~ 5.5 thousand.

To measure the spatial locality of the P2P hosts, we define
the density of a prefix as the number of unique active IP ad-
dresses belonging to it. Similarly, the density of an AS is de-
fined to be the number of unique prefixes belonging to it. From
Fig. 2, we observe that the FastTrack hosts are distributed much
more densely than the Gnutella and DirectConnect hosts. This
is likely due to the different sizes of the three P2P systems.
The average density of prefixes in FastTrack is 64, while that
of Gnutella and DirectConnect are 16 and 4, respectively. The
average AS density in FastTrack, Gnutella, and DirectConnect
are similar (i.e., 3 ~ 4). This implies that the FastTrack hosts
have better potential to find nearby peers, and that most of the
queries can be resolved locally (e.g., within a network prefix).
One potential improvement to the Fast Track protocol is to take
advantage of the hosts location.

B. Traffic Volume Distribution

Fig. 3 plots the ranked cumulative distribution function
(CDF) for the FastTrack network (Gnutella and DirectConnect
show similar trends), for the aggregate upstream (denoted as
“Src”) and downstream (denoted as “Dst”) traffic volumes
at different network aggregation levels. The ranked CDF is
obtained by first ordering the IPs (or prefixes or ASes) in
order of decreasing volume (separate ranks for upstream and
downstream volumes), and plotting the cumulative volumes for
the ranked list.

We observe extreme skews in the distributions of upstream
and downstream volumes at the three aggregation grains—a few
heavy hitters account for much of the traffic. For instance, the
top 0.1% of IPs, prefixes, and ASes transmit 33%, 27%, and
26%, respectively, of the total traffic in FastTrack. The top 1%
of the IPs, prefixes, and ASes transmit 73%, 64%, 73% of the
total traffic, respectively. An individual IP address may transmit
over 10 GB of data during a single day.

The skewed traffic patterns are observed across the three
months. Fig. 4 shows that distribution of the upstream traffic
volume from individual IP addresses for the three P2P net-
works. We present results for two days (one weekday and one
weekend day) for each of the three months. We observe that
the top 1%—2% of the IP addresses account for more than 50%,
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and the top 10% of the IPs account for more than 90%, of
the total traffic volume. Similar patterns are observed for both
the weekday and weekend in the same month. We do observe
(Fig. 4) that the top 10% of the IPs account for a slightly
smaller percentage of the total traffic volume in December than
in September.

The above behavior is more reminiscent of a client-server en-
vironment where a few popular servers with popular content are
responsible for originating most of the traffic. This might sug-
gest that the P2P search protocol should first query the contents
of the relatively small number of heavy hitters, so that queries
for popular objects (which are likely to be most of the queries)
will be served by searching only a small number of hosts. It
may still be necessary to search a large number of hosts, but
only for relatively uncommon queries. Equally, the skew in the
upstream traffic distribution might also suggest that the P2P pro-
tocols should be designed to spread the load more evenly over
the set of peers in the system.

Similar skewed behavior is observed for the downstream
traffic, across all three P2P systems. In FastTrack, the top
100 IP addresses receive a substantial 57 GB (6% of the total
traffic), while the top 0.1% of the IPs (1190 IP addresses)
together receive 245 GB (25% of the total traffic). Large
file downloads and/or proxies could easily explain the high
levels of incoming traffic for the heavy hitters. Hosts with
different bandwidth connectivities accessing the system may
also contribute to the high variability observed. The skewed
distribution for FastTrack can also be attributed to the fact that
all the query-response traffic is only circulated between a small
subset of hosts—the SuperNodes. However, in Gnutella, all the
hosts take part in the signaling, yet we still observe the extreme

100 — r
o SrclP
- DstIP +—
8 SrcPretf’jx -
2 80| DstPrefix a— |
E
S
5]
§ 60 ]
5
=
A 40
o
2
=
=
E 20}
&
0 . . L A
1 10 100 1000 10000 100000

Number of unique entities contacted

Fig. 5. Cumulative distribution of network connectivity at the IP and network
prefix (PR) levels, for hosts participating in FastTrack on September 14, 2001.

variation in downstream traffic volumes. The skewed traffic
distribution (upstream and downstream) at the prefix, and AS
level suggests that coarse-grained traffic management and
policing mechanisms such as rate limiting and pricing targeted
at the heavy hitter entities would be useful for network traffic
engineering and provisioning purposes.

C. Host Connectivity

To study application-level connectivity between the hosts, we
next consider the distribution of the total number of unique en-
tities (IP, network prefix, AS) that a single entity communicates
with. Fig. 5 plots the CDF of the network connectivity at the IP
and network prefix aggregation levels for FastTrack. The distri-
bution at the AS aggregation level shows similar behavior as the
prefix level distribution and is not shown in the figure. We find
that about 48% of the individual IPs communicate with at most
one IP, and 89% with at most ten other IP addresses. This may
be due to the fact that each FastTrack client connect to only one
SuperNode at a time. This also indicates that the file swarming
is not widely used at the time our experiments were conducted.
Only the top 1% of the IP addresses communicate with more
than 80 other IP addresses. The distribution is less skewed for
the network prefix and AS level connectivity. 75% of the pre-
fixes communicate with at least prefixes, and the top 1% of the
prefixes talk with at least 1000 prefixes. 80% of the ASes com-
municate with multiple ASes, and the top 1% of the ASes com-
municate with at least 476 other ASes.

We observe hat few hosts have very high connectivity and
most hosts have very small connectivity in the P2P networks.
The IP level statistics also suggest that such P2P networks could
be highly vulnerable to failures of the tiny percentage of hosts
with high degrees of connectivity. This is consistent with find-
ings from recent studies based on Gnutella signalling traffic
[18], [31]. We also find that the prefix and AS level connec-
tivity distributions are less skewed than at the IP address level.
This suggests that at these coarser grained levels of aggregation,
anode is less vulnerable to disconnection from the P2P network
as a significant percentage of prefixes (and ASes) communicate
with more than one prefix (or AS).
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V. P2P SYSTEM DYNAMICS

Hosts joining and leaving can potentially make the P2P
system very dynamic. In the following, we quantitatively
measure the dynamics in terms of 1) how many hosts are active
during a certain period of time; 2) how long a host stays in the
P2P system; and 3) how active the hosts are during a certain
period of time.

A. Traffic Pattern Over Time

We first measure how many hosts are active in the P2P sys-
tems during a certain time period. This is of interest to an ISP,
as it helps to understand the overall pattern of the P2P traffic
across its network. We characterize the traffic pattern using dis-
crete time bins. We vary the bin size from 15 minutes to 1 hour
and compute the number of unique IP addresses, network pre-
fixes, and ASes observed with each bin and the corresponding
traffic volume transferred. Fig. 6 shows the binning results for
the FastTrack system. The results are similar for Gnutella and
DirectConnect and are not reported here. Fig. 6(a) shows the
traffic volume (for hourly bins) transferred among FastTrack
hosts across 24 hours on September 14, 2001 (GMT). We ob-
serve the “time of the day” effect on the traffic volume per
hour. The traffic volume is heavy between evening and midnight
(EST) and tapers down gradually early in the morning. This sug-
gests many users are likely to join the P2P network after work
and keep downloading data at night. We also observe two peaks
three hours apart during the heavy traffic period. This is likely
due to the time difference between the east and west coasts of
the continental U.S.

Fig. 6(b) shows the “time of the day” effect for the number of
IP addresses, network prefixes, and ASes that are either sending
or receiving data. We notice that FastTrack hosts have little ac-
tivity early in the morning but start to be more active at noon.
However, the increasing number of active IP addresses in the
late morning does not appear to have major impact on the traffic
volumes transferred among them. This seems to indicate that the
hosts are mostly involved in signalling communications around
this time, and that the heavier data downloads start to happen
later in the day. Similar observations hold for the number of ac-
tive network prefixes and ASes.
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Fig. 7. Histogram of flow inter-arrival times for IP addresses.

B. Host Connection Duration and On-Time

We next study how long an IP address stays in the P2P system.
We examine the distribution of connection duration, on-time per
day, and number of connections per day for P2P hosts. Recall
(Section III-E) that the computation of these metrics involves a
threshold 6. We chose the value of ¢ by examining the distri-
bution of the flow inter-arrival time for IP addresses. The flow
inter-arrival time of an IP address is the time interval between
the termination of one flow and and the initiation of the next
flow with the same IP as one end-point. Fig. 7 shows that the
flow inter-arrival time distributions for all three P2P systems
exhibit similar trends. Note that there are a large number of
very short (few seconds) flow inter-arrival times. Many of the
short flow inter-arrival times (particularly the one-second inter-
vals) could be a result of programmed sequential downloading
of multiple files. It may also be due to a single session being split
into multiple flows by Cisco netflow—this can happen, e.g., for
long sessions (see Section II). Beyond the few-seconds range,
there are some prominent spikes between 60 and 500 seconds.
These spikes could be due to the time spent by users in com-
posing and submitting new queries to the P2P network. As part
of our ongoing work, we are further investigating the distribu-
tion of flow inter-arrival times.
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Distribution of FastTrack hosts’ connections on September 14, 2001. (a) Choice of 6. The cumulative distribution of the total on-time, for

6§ = 1,5,10,20, 30 minutes. (b) The cumulative distribution of the total on-time at IP, prefix and AS levels (6 = 30 minutes). (¢) The cumulative distribution
of the number of connections at IP, prefix, and AS levels (6 = 30 minutes). The z-axis is in logscale.

Based on our observation on the distribution of flow inter-
arrival time, we vary the threshold § from 1 to 30 minutes to
evaluate the sensitivity of the choice of ¢ and to identify suit-
able value of §. Fig. 8(a) shows the distribution of total daily
on-time for an IP address. We observe that the results vary sig-
nificantly for small values of § in the 1-5 minutes range. How-
ever, the results become progressively less sensitive for large
values of 0, and there is very little difference between the curves
for 6 = 20 or 30 minutes. We therefore use 6 = 30 minutes to
compute the on-time, number of connections, and average con-
nection duration.

Fig. 8(b) shows the cumulative distribution of the on-time for
the FastTrack hosts on September 14, 2001. We observe that
60% of the IP addresses, 40% of network prefixes, and 30% of
the ASes stay in FastTrack for 10 minutes or less per day. The
graphs show that the P2P system is much less transient at the
prefix and AS aggregation levels.

Fig. 8(c) shows the cumulative distribution of the number of
connections per day. The number of connections of a host mea-
sures how frequently it joins the P2P system. We observe that
65% of the IP addresses join FastTrack only once. The distribu-
tion of the number of connections is less skewed at the network
prefix and AS levels. This is consistent with our observations on
the distribution of the connection duration. We found that most
of the connections are very short. Over 20% of the connections
last one minute or less. This observation holds at the IP, network
prefix, and AS levels. The large number of short connections
may be because the vast majority of the data transfer events are
queries and responses.

We also compared the distributions of the on-time, the
number of connections, and the average connection duration of
hosts in the three P2P systems. Around 60% of the IPs keep
active in FastTrack for no longer than 10 minutes each time they
join the system. Hosts tend to stay longer in DirectConnect than
in the other two P2P systems. However, the distribution of the
number of connections of the hosts in all three P2P systems are
similar. Unlike FastTrack and Gnutella hosts, DirectConnect
hosts tend to stay in the P2P system longer each time they

join the system. This may be one factor contributing to our
earlier observation that individual DirectConnect hosts usually
contributes more traffic than FastTrack or Gnutella hosts.

C. Mean Bandwidth Usage for Hosts

Fig. 9 shows the cumulative distribution of the mean up-
stream (denoted as “Src”’) and downstream bandwidth (denoted
as “Dst”) usage at the IP address level for FastTrack, Gnutella,
and DirectConnect. In FastTrack [Fig. 9(a)], for around 1/3 of
the IP addresses, we observe mean downstream bandwidths
of 56 kb/s or less. These probably correspond to dial-up
Internet service users. Overall, 2/3 of the IP addresses exhibit
downstream bandwidths in excess of 56 kb/s, suggesting that
these correspond to users with broadband network connectivity.
The average upstream bandwidth is usually smaller than the
average downstream bandwidth. This may be partly due to the
presence of nodes with asymmetric bandwidth connectivity as
is the case for DSL and cable modem users. Another potential
contributing factor behind this behavior could be that individual
users have the ability (in many P2P systems) to rate-limit the
upstream data transfers from their machines. Half of the IP
addresses have average upstream bandwidth of 56 kb/s or less.
The distribution of the average bandwidth of Gnutella hosts
is similar to that of FastTrack hosts and is not shown here.
However, we observe higher bandwidths (both upstream and
downstream) for the DirectConnect hosts in Fig. 9(b). 20%
of the IP addresses have mean downstream bandwidth of 56
kb/s or less, while another 40% of the IP addresses have mean
downstream bandwidth of 56 ~ 256 kb/s. Correspondingly, 1/3
of the hosts have average upstream bandwidth of 56 kb/s. This
may be another factor contributing to our earlier observation
that individual DirectConnect hosts contributes much more
traffic volume than FastTrack and Gnutella hosts.

VI. TRAFFIC CHARACTERIZATION

In order to develop a model for P2P workload, it is impor-
tant to understand the distribution of the individual metrics of
interest, as well as the relationships between the different met-
rics. As a first step toward developing a workload model for P2P
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traffic, we explore two questions in this section. First, Zipf’s law
[32] is widely used to model skewed distributions because of its
simple form and has been recently applied to research on Web
caching [33] and Internet topology models [35]. Earlier work
[44] suggests that the Zipf’s law also applies to the signaling
traffic for Gnutella. An interesting question is whether Zipf’s
law is suitable for modeling the overall P2P traffic including
both the signaling and the data traffic. We explore this question
first. Second, we explore the relationships between the different
metrics of interest.

A. Power Law

Zipf’s law is best described with an example, such as words
in a book. Let V be the vocabulary size, and let f; be the occur-
rence frequency of the most frequent vocabulary word, fy for
the second most frequent, and so on. The rank-frequency plot is
the plot of the occurrence frequency f,. of each vocabulary word
versus its rank r, in log-log scales. The rank-frequency version
of Zipf’s law states that f,. oc 1/r. This is typically referred to
as the Zipf’s law or the Zipf distribution. In log-log scales, the
Zipf distribution gives a straight line with slope — 1. The gener-
alized Zipf distribution (or “Zipf-like” distribution) is defined as
fr o< 1/7%, where the slope — in log-log scales can be different
than — 1. The generalized Zipf distribution is also referred to as
the “power law.”

We studied four metrics: host connectivity, traffic volume,
ontime, and average bandwidth of the hosts. Fig. 10(a) shows
the rank-frequency plot of the number of unique IP addresses
that an IP address contacted. We observe that the distribution
of the number of unique IP addresses is heavy-tailed. However,
the distribution is not a straight line in log-log scales as we
might expect from Zipf (or generalized-Zipf) distribution. We
observe a clear tilting in the rank-frequency plot. This implies
that Zipf’s law might not be the suitable model for the host con-
nectivity. Similar observation holds on the distribution of the
traffic volume contributed by an IP address, on-time of an IP
address, and average upstream and downstream bandwidths ex-
cept that they are even more skewed.

We next focus on the top 10% of the hosts that source about
90% of the total traffic. Fig. 10(b) shows the rank-frequency plot
of the number of unique IP addresses that an IP address com-
municates with. We observe that the distribution of the number
of unique IP addresses that each IP address contacts is heavy-
tailed. However, it is not a straight line in log-log scales, either.
This indicates the host connectivity for top 10% heavy hitters
does not obey power laws. Similar observation holds on the dis-
tribution of the traffic volume [Fig. 10(c)], on-time [Fig. 10(d)],
and average upstream and downstream bandwidth (not shown
here) of an IP address for the top 10% of the IP addresses. The
above observations also hold for Gnutella and DirectConnect.
In summary, we conclude that (in general) both the overall P2P
traffic and the traffic from the top 10% heavy hitters seem to be
heavy tailed for the data we examined, but they are not precisely
Zipf’s distributions. This might be due to the fact that P2P sys-
tems are distributed file sharing systems. The heavy tailed be-
havior suggests that ISP traffic engineering and pricing can be
applied to relatively few users to manage P2P traffic.

To our best knowledge, this is the first study showing that P2P
traffic does not obey power laws. Further analysis is required
for developing accurate models for these distributions. We are
addressing this as part of ongoing work.

B. Relationships Between Measures

We next explore the relationships between the different met-
rics of interest. We consider FastTrack and focus on the top 1%
of the IP addresses that source about 73% of the total traffic
volume for September 14 and compute the correlation coeffi-
cients for six pairs of metrics (see Table II). Note that the values
for a metric can span a large range and may be unevenly dis-
tributed over the range. Therefore, in addition to the correlation
coefficient for the original data, we also consider the correla-
tion coefficient for the logarithmic transformation of the data
values, to limit the impact of outliers. The coefficient values thus
obtained suggest weak positive correlations between 1) traffic
volume and on-time; 2) traffic volume sourced by an IP and the
number of unique IPs that it connects to; and 3) volume and
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Fig. 10. Rank-frequency plots of the P2P metrics for FastTrack on September 14, 2001: (a) overall host connectivity; (b) host connectivity for the top 10% IP
addresses; (c) traffic volume of the top 10% IP addresses; (d) on-time of the top 10% IP addresses (both -axis and y-axis are labeled in logscale).

TABLE 11
CORRELATIONS OF TRAFFIC VOLUME, ON-TIME, MEAN BANDWIDTH USAGE
(BW), NUMBER OF UNIQUE IP ADDRESSES THAT EACH HOST CONNECTS TO,
ALL MEASURED FOR THE UPSTREAM DIRECTION

Metric pair Correlation
(z,y) (z,y) | (og =, log y)
Volume, On-time 0.180 0.410
Volume, # Unique IPs 0.167 0.219
Volume, BW 0.138 0.269
# Unique IPs, On-time | 0.430 0.617
# Unique IPs, BW -0.086 -0.519
BW, On-time -0.344 -0.754

bandwidth; moderate positive correlation between the number
of unique IPs and on-time; and moderate negative correlation
between 1) mean bandwidth usage and number of unique IPs;
and 2) mean bandwidth usage and on-time. The last of the above
correlations can be explained by recalling the relationship be-
tween volume, bandwidth, and on-time. Overall, this correlation
data does not indicate the existence of a strong linear relation-
ship for any of the metric pairs examined.

To provide more insight into the nature of the pairwise
relationships, we next consider the corresponding scatter plots
(Figs. 11 and 12). Fig. 11(a) indicates that the top-ranking
volume heavy hitters are likely to have long on-times, and
that IP addresses with short on-times are likely to contribute
small traffic volumes. However, IP addresses with very long
on-times span the range of traffic volumes. Also, IP addresses
with small upstream volumes are distributed over the range
of upstream on-time values. Long on-time coupled with small

traffic volume would be consistent with long-lived SuperNodes
handling query communications, if the IP connectivity were
high. Fig. 11(b) shows that an IP address communicating with a
large number of other IP addresses can transmit a small amount
of traffic. SuperNodes are likely to exhibit such behavior. The
figure also shows that an IP address communicating with a
handful of IP addresses can source significant traffic—this
would be consistent with actual file transfers. Fig. 11(c) shows
that the top-ranking volume heavy hitters are likely to have large
bandwidths, and that IP addresses with very small bandwidths
are likely to contribute small traffic volumes. However, IP
addresses with very long bandwidths are distributed across the
range of traffic volumes. Similarly, IP addresses sourcing small
traffic volumes are distributed over the range of bandwidth
values.

Fig. 12(a) shows that the IP addresses that have large IP con-
nectivity counts tend to have very long on-times, and that IP
addresses with short on-times are likely to communicate with
a small number of IPs. However, IP addresses with very long
on-times are distributed across a range of IP connectivity counts.
Small IP connectivity and long on-times would be consistent
with hosts transferring large data files. Fig. 12(b) shows that
there are IP addresses with high upstream bandwidths that have
low IP connectivity counts. IP addresses that send traffic to a
large number of IPs tend to span a range of upstream band-
widths, but are not among the IP addresses with the highest
bandwidths, suggesting that these might be SuperNodes han-
dling query communications. Fig. 12(c) shows that IP addresses
with low upstream bandwidths have very long on-times. This
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may be due to either the long time taken to download large files,
or because the corresponding node is a SuperNodes with a large
IP connectivity. The figure also shows that IP addresses with
very long on-times tend to span the range of upstream band-
widths. Similarly, IP addresses with high upstream bandwidths
span a range of upstream on-times. The scatter plots for the top
10% of the IP addresses are similar and are not shown here.

VII. P2P TRAFFIC VERSUS WEB TRAFFIC

As part of our ongoing work, we are comparing P2P and Web
traffic. We present some initial results here. We examine flow
level traffic from a large ISP’s peering links for March 2002.
The Web traffic is extracted by considering TCP flows which
use port numbers 80 and 8080 as the source or destination ports.
To reduce the processing overhead, the stratified sampling tech-
nique [42] is applied. Considering per-prefix daily traffic vol-
umes, we find that over 97% of the prefixes contributing to P2P
traffic also contribute Web traffic. In addition, we observe that
the heavy hitter P2P prefixes all tend to be heavy hitters in terms
of Web traffic.

We say that the traffic from a prefix is stable if the percent-
ages of the daily aggregated traffic volume from the prefix do
not change over days. There are two factors that contribute to
traffic instability. First, the traffic from a prefix may fluctuate

over time. Second, there might be a trend of growing traffic
volume over time. For service providers, either case would be
of great interest to capture and predict. In our initial analysis,
we do not separate the effect of two type of changes in traffic
volume. Instead, we characterize them as a whole and analyze
traffic volume changes from day to day.

To characterize the traffic stability of a prefix, we compute
the range of the traffic volume changes for each prefix over 31
days and normalize it by the mean daily traffic volume from the
prefix. We examine the top 0.001%, 0.1%, 1%, and 10% heavy
hitter prefixes which are responsible for 10%, 30%, 50% and
90% of the corresponding monthly aggregated traffic volume.
We show the results for the top 0.01% and 1% heavy hitter pre-
fixes (other results are similar). Fig. 13 compares the P2P traffic
with the Web traffic and total traffic. Fig. 13(a) shows the re-
sults for the top 0.01% prefixes. For P2P traffic, each prefix has
traffic volume changes that are within 10% of the mean daily
traffic for that prefix. In the cases of Web and total traffic, less
than 40% and 20% of the prefixes have traffic volume changes
that are within 10% of the mean daily traffic for that prefix, re-
spectively. The P2P traffic contributed by the top heavy hitter
prefixes is more stable than that for either the Web traffic or
the total traffic. This is somewhat counterintuitive, given the dy-
namism of P2P systems we observed at the IP addresses level,
as discussed in previous sections. Some of the stability may be
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Fig. 13.

caused by long lasting data transfer flows that contribute bulk
of the data. Fig. 13(b) shows the stability results for the top 1%
prefixes. Note that a small fraction (<3%) of the prefixes have
traffic volume changes >100%. The figure indicates that the
P2P traffic contributed by the top heavy hitter prefixes is more
stable than that for Web traffic. The total traffic contributed by
the top heavy hitter prefixes is also more stable than that for
Web traffic. This might be because the traffic from the top heavy
hitter prefixes is dominated by P2P traffic which tends to be
more stable. We are currently exploring if the above behavior
holds across longer time periods. A stable traffic load at the
prefix level makes it easier to model and predict workloads for
P2P traffic. The high volume and good stability of P2P traffic in-
dicates that application-specific layer-3 traffic engineering may
be a promising way to manage the P2P workload in an ISP’s
network.

VIII. IMPLICATIONS

In this paper, we presented a novel approach to measure and
characterize the P2P traffic by analyzing flow-level data col-
lected from multiple routers in a large ISP. We studied three pop-
ular P2P systems—FastTrack, Gnutella, and DirectConnect. We
analyzed flow-level records across three months and observed
that all three systems exhibit significant increases in both traffic
volume and number of users, even across consecutive months.
Our analysis covers both signaling traffic and actual data traffic.
This complements previous work which only considered sig-
naling traffic for Gnutella. The following are our key findings.

The traffic volume for individual hosts is extremely variable
at the IP, prefix, and AS levels. The traffic volume generated
by individual hosts is extremely variable—less than 10% of
the IP addresses contribute around 99% of the total traffic
volume. Individual heavy-hitter hosts can generate significant
traffic volumes. Connectivity between different hosts is highly
skewed—a very large fraction of IPs communicate with less
than 10 other IPs, and a very tiny fraction communicates with
a large number of hosts. The IP level statistics suggests that
such P2P networks could be highly vulnerable to failures of
the tiny percentage of hosts with high degrees of connectivity.
Though host connectivity, traffic volume, host on-time, average
bandwidth are highly skewed and exhibit heavy tails, they
cannot be well modeled by the Zipf’s distribution. The skewed
traffic distribution (upstream and downstream) at the prefix,
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Cumulative distribution of the traffic volume changes for top heavy hitter prefixes. (a) Top 0.01%. prefixes. (b) Top 1% prefixes.

and AS level suggests that coarse-grained traffic management
and policing mechanisms such as rate limiting and pricing
targeted at the heavy hitter entities would be useful for network
traffic engineering and provisioning. To our best knowledge,
this is the first study that shows P2P traffic does not strictly
obey power laws.

All three P2P systems exhibit a high level of system dy-
namics-only a small fraction of hosts are persistent over long
time periods. This behavior makes it a challenging proposition
to realize a large P2P system based on a well-defined structured
overlay architecture [4], [5], [7]. However, we also find that
the P2P systems exhibit much more stability and persistence
at the prefix and AS aggregation levels. Thus, inserting local
indexing/caching nodes may help to reduce the effect of the
dynamism in the system. We also find that the fraction of P2P
traffic contributed by each prefix remains relatively unchanged
and much more stable than the corresponding distribution for
either Web traffic or even for overall traffic, over time periods
of several days. This is somewhat counter-intuitive given the
conventional notion that P2P systems are very dynamic. This
is good news for ISPs, as the high volume and good stability
properties of P2P traffic at the coarser aggregations indicate
that application-specific layer-3 traffic engineering may be
a promising way to manage the P2P workload in an ISP’s
network.

IX. CONCLUSION

We have presented a novel approach to measure and char-
acterize the P2P traffic by analyzing flow-level data collected
from multiple routers in a large ISP. We have presented analysis
of three popular P2P systems—FastTrack, Gnutella, and Direct-
Connect, across three months. As part of ongoing work, we are
developing practical workload models for P2P traffic that can
be used to evaluate traffic engineering and provisioning poli-
cies for P2P systems. We are also in the process of enhancing
our passive measurement approach with selective active probing
techniques.
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