8 research outputs found

    Characterizing the set of coherent lower previsions with a finite number of constraints or vertices

    Get PDF
    The standard coherence criterion for lower previsions is expressed using an infinite number of linear constraints. For lower previsions that are essentially defined on some finite set of gambles on a finite possibility space, we present a reformulation of this criterion that only uses a finite number of constraints. Any such lower prevision is coherent if it lies within the convex polytope defined by these constraints. The vertices of this polytope are the extreme coherent lower previsions for the given set of gambles. Our reformulation makes it possible to compute them. We show how this is done and illustrate the procedure and its results

    Characterizing the set of coherent lower previsions with a finite number of constraints or vertices

    Get PDF
    The standard coherence criterion for lower previsions is expressed using an infinite number of linear constraints. For lower previsions that are essentially defined on some finite set of gambles on a finite possibility space, we present a reformulation of this criterion that only uses a finite number of constraints. Any such lower prevision is coherent if it lies within the convex polytope defined by these constraints. The vertices of this polytope are the extreme coherent lower previsions for the given set of gambles. Our reformulation makes it possible to compute them. We show how this is done and illustrate the procedure and its results

    Completely monotone outer approximations of lower probabilities on finite possibility spaces

    Get PDF
    Drawing inferences from general lower probabilities on finite possibility spaces usually involves solving linear programming problems. For some applications this may be too computationally demanding. Some special classes of lower probabilities allow for using computationally less demanding techniques. One such class is formed by the completely monotone lower probabilities, for which inferences can be drawn efficiently once their Möbius transform has been calculated. One option is therefore to draw approximate inferences by using a completely monotone approximation to a general lower probability; this must be an outer approximation to avoid drawing inferences that are not implied by the approximated lower probability. In this paper, we discuss existing and new algorithms for performing this approximation, discuss their relative strengths and weaknesses, and illustrate how each one works and performs

    Characterizing coherence, correcting incoherence

    Get PDF
    Lower previsions defined on a finite set of gambles can be looked at as points in a finite-dimensional real vector space. Within that vector space, the sets of sure loss avoiding and coherent lower previsions form convex polyhedra. We present procedures for obtaining characterizations of these polyhedra in terms of a minimal, finite number of linear constraints. As compared to the previously known procedure, these procedures are more efficient and much more straightforward. Next, we take a look at a procedure for correcting incoherent lower previsions based on pointwise dominance. This procedure can be formulated as a multi-objective linear program, and the availability of the finite characterizations provide an avenue for making these programs computationally feasible

    Characterizing Coherence, Correcting Incoherence

    Get PDF
    Abstract Lower previsions defined on a finite set of gambles can be looked at as points in a finite-dimensional real vector space. Within that vector space, the sets of sure loss avoiding and coherent lower previsions form convex polyhedra. We present procedures for obtaining characterizations of these polyhedra in terms of a minimal, finite number of linear constraints. As compared to the previously known procedure, these procedures are more efficient and much more straightforward. Next, we take a look at a procedure for correcting incoherent lower previsions based on pointwise dominance. This procedure can be formulated as a multi-objective linear program, and the availability of the finite characterizations provide an avenue for making these programs computationally feasible
    corecore