47 research outputs found

    Characterizing the set of coherent lower previsions with a finite number of constraints or vertices

    Get PDF
    The standard coherence criterion for lower previsions is expressed using an infinite number of linear constraints. For lower previsions that are essentially defined on some finite set of gambles on a finite possibility space, we present a reformulation of this criterion that only uses a finite number of constraints. Any such lower prevision is coherent if it lies within the convex polytope defined by these constraints. The vertices of this polytope are the extreme coherent lower previsions for the given set of gambles. Our reformulation makes it possible to compute them. We show how this is done and illustrate the procedure and its results

    Characterizing the set of coherent lower previsions with a finite number of constraints or vertices

    Get PDF
    The standard coherence criterion for lower previsions is expressed using an infinite number of linear constraints. For lower previsions that are essentially defined on some finite set of gambles on a finite possibility space, we present a reformulation of this criterion that only uses a finite number of constraints. Any such lower prevision is coherent if it lies within the convex polytope defined by these constraints. The vertices of this polytope are the extreme coherent lower previsions for the given set of gambles. Our reformulation makes it possible to compute them. We show how this is done and illustrate the procedure and its results

    Characterizing coherence, correcting incoherence

    Get PDF
    Lower previsions defined on a finite set of gambles can be looked at as points in a finite-dimensional real vector space. Within that vector space, the sets of sure loss avoiding and coherent lower previsions form convex polyhedra. We present procedures for obtaining characterizations of these polyhedra in terms of a minimal, finite number of linear constraints. As compared to the previously known procedure, these procedures are more efficient and much more straightforward. Next, we take a look at a procedure for correcting incoherent lower previsions based on pointwise dominance. This procedure can be formulated as a multi-objective linear program, and the availability of the finite characterizations provide an avenue for making these programs computationally feasible

    Characterizing Coherence, Correcting Incoherence

    Get PDF
    Abstract Lower previsions defined on a finite set of gambles can be looked at as points in a finite-dimensional real vector space. Within that vector space, the sets of sure loss avoiding and coherent lower previsions form convex polyhedra. We present procedures for obtaining characterizations of these polyhedra in terms of a minimal, finite number of linear constraints. As compared to the previously known procedure, these procedures are more efficient and much more straightforward. Next, we take a look at a procedure for correcting incoherent lower previsions based on pointwise dominance. This procedure can be formulated as a multi-objective linear program, and the availability of the finite characterizations provide an avenue for making these programs computationally feasible

    Completely monotone outer approximations of lower probabilities on ïŹnite possibility spaces

    Get PDF
    Drawing inferences from general lower probabilities on finite possibility spaces usually involves solving linear programming problems. For some applications this may be too computationally demanding. Some special classes of lower probabilities allow for using computationally less demanding techniques. One such class is formed by the completely monotone lower probabilities, for which inferences can be drawn efficiently once their Möbius transform has been calculated. One option is therefore to draw approximate inferences by using a completely monotone approximation to a general lower probability; this must be an outer approximation to avoid drawing inferences that are not implied by the approximated lower probability. In this paper, we discuss existing and new algorithms for performing this approximation, discuss their relative strengths and weaknesses, and illustrate how each one works and performs

    Learning from samples using coherent lower previsions

    Get PDF
    Het hoofdonderwerp van dit werk is het afleiden, voorstellen en bestuderen van voorspellende en parametrische gevolgtrekkingsmodellen die gebaseerd zijn op de theorie van coherente onderprevisies. Een belangrijk nevenonderwerp is het vinden en bespreken van extreme onderwaarschijnlijkheden. In het hoofdstuk ‘Modeling uncertainty’ geef ik een inleidend overzicht van de theorie van coherente onderprevisies ─ ook wel theorie van imprecieze waarschijnlijkheden genoemd ─ en de ideeĂ«n waarop ze gestoeld is. Deze theorie stelt ons in staat onzekerheid expressiever ─ en voorzichtiger ─ te beschrijven. Dit overzicht is origineel in de zin dat ze meer dan andere inleidingen vertrekt van de intuitieve theorie van coherente verzamelingen van begeerlijke gokken. Ik toon in het hoofdstuk ‘Extreme lower probabilities’ hoe we de meest extreme vormen van onzekerheid kunnen vinden die gemodelleerd kunnen worden met onderwaarschijnlijkheden. Elke andere onzekerheidstoestand beschrijfbaar met onderwaarschijnlijkheden kan geformuleerd worden in termen van deze extreme modellen. Het belang van de door mij bekomen en uitgebreid besproken resultaten in dit domein is voorlopig voornamelijk theoretisch. Het hoofdstuk ‘Inference models’ behandelt leren uit monsters komende uit een eindige, categorische verzameling. De belangrijkste basisveronderstelling die ik maak is dat het bemonsteringsproces omwisselbaar is, waarvoor ik een nieuwe definitie geef in termen van begeerlijke gokken. Mijn onderzoek naar de gevolgen van deze veronderstelling leidt ons naar enkele belangrijke representatiestellingen: onzekerheid over (on)eindige rijen monsters kan gemodelleerd worden in termen van categorie-aantallen (-frequenties). Ik bouw hier op voort om voor twee populaire gevolgtrekkingsmodellen voor categorische data ─ het voorspellende imprecies Dirichlet-multinomiaalmodel en het parametrische imprecies Dirichletmodel ─ een verhelderende afleiding te geven, louter vertrekkende van enkele grondbeginselen; deze modellen pas ik toe op speltheorie en het leren van Markov-ketens. In het laatste hoofdstuk, ‘Inference models for exponential families’, verbreed ik de blik tot niet-categorische exponentiĂ«le-familie-bemonsteringsmodellen; voorbeelden zijn normale bemonstering en Poisson-bemonstering. Eerst onderwerp ik de exponentiĂ«le families en de aanverwante toegevoegde parametrische en voorspellende previsies aan een grondig onderzoek. Deze aanverwante previsies worden gebruikt in de klassieke Bayesiaanse gevolgtrekkingsmodellen gebaseerd op toegevoegd updaten. Ze dienen als grondslag voor de nieuwe, door mij voorgestelde imprecieze-waarschijnlijkheidsgevolgtrekkingsmodellen. In vergelijking met de klassieke Bayesiaanse aanpak, laat de mijne toe om voorzichtiger te zijn bij de beschrijving van onze kennis over het bemonsteringsmodel; deze voorzichtigheid wordt weerspiegeld door het op deze modellen gebaseerd gedrag (getrokken besluiten, gemaakte voorspellingen, genomen beslissingen). Ik toon ten slotte hoe de voorgestelde gevolgtrekkingsmodellen gebruikt kunnen worden voor classificatie door de naĂŻeve credale classificator.This thesis's main subject is deriving, proposing, and studying predictive and parametric inference models that are based on the theory of coherent lower previsions. One important side subject also appears: obtaining and discussing extreme lower probabilities. In the chapter ‘Modeling uncertainty’, I give an introductory overview of the theory of coherent lower previsions ─ also called the theory of imprecise probabilities ─ and its underlying ideas. This theory allows us to give a more expressive ─ and a more cautious ─ description of uncertainty. This overview is original in the sense that ─ more than other introductions ─ it is based on the intuitive theory of coherent sets of desirable gambles. I show in the chapter ‘Extreme lower probabilities’ how to obtain the most extreme forms of uncertainty that can be modeled using lower probabilities. Every other state of uncertainty describable by lower probabilities can be formulated in terms of these extreme ones. The importance of the results in this area obtained and extensively discussed by me is currently mostly theoretical. The chapter ‘Inference models’ treats learning from samples from a finite, categorical space. My most basic assumption about the sampling process is that it is exchangeable, for which I give a novel definition in terms of desirable gambles. My investigation of the consequences of this assumption leads us to some important representation theorems: uncertainty about (in)finite sample sequences can be modeled entirely in terms of category counts (frequencies). I build on this to give an elucidating derivation from first principles for two popular inference models for categorical data ─ the predictive imprecise Dirichlet-multinomial model and the parametric imprecise Dirichlet model; I apply these models to game theory and learning Markov chains. In the last chapter, ‘Inference models for exponential families’, I enlarge the scope to exponential family sampling models; examples are normal sampling and Poisson sampling. I first thoroughly investigate exponential families and the related conjugate parametric and predictive previsions used in classical Bayesian inference models based on conjugate updating. These previsions serve as a basis for the new imprecise-probabilistic inference models I propose. Compared to the classical Bayesian approach, mine allows to be much more cautious when trying to express what we know about the sampling model; this caution is reflected in behavior (conclusions drawn, predictions made, decisions made) based on these models. Lastly, I show how the proposed inference models can be used for classification with the naive credal classifier
    corecore