11,821 research outputs found

    Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes.

    Get PDF
    In this paper we investigate the following two questions: Q1: Do there exist optimal proof systems for a given language L? Q2: Do there exist complete problems for a given promise class C? For concrete languages L (such as TAUT or SAT) and concrete promise classes C (such as NP∩coNP, UP, BPP, disjoint NP-pairs etc.), these ques-tions have been intensively studied during the last years, and a number of characterizations have been obtained. Here we provide new character-izations for Q1 and Q2 that apply to almost all promise classes C and languages L, thus creating a unifying framework for the study of these practically relevant questions. While questions Q1 and Q2 are left open by our results, we show that they receive affirmative answers when a small amount on advice is avail-able in the underlying machine model. This continues a recent line of research on proof systems with advice started by Cook and Kraj́ıček [6]

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper

    Two-message quantum interactive proofs and the quantum separability problem

    Full text link
    Suppose that a polynomial-time mixed-state quantum circuit, described as a sequence of local unitary interactions followed by a partial trace, generates a quantum state shared between two parties. One might then wonder, does this quantum circuit produce a state that is separable or entangled? Here, we give evidence that it is computationally hard to decide the answer to this question, even if one has access to the power of quantum computation. We begin by exhibiting a two-message quantum interactive proof system that can decide the answer to a promise version of the question. We then prove that the promise problem is hard for the class of promise problems with "quantum statistical zero knowledge" (QSZK) proof systems by demonstrating a polynomial-time Karp reduction from the QSZK-complete promise problem "quantum state distinguishability" to our quantum separability problem. By exploiting Knill's efficient encoding of a matrix description of a state into a description of a circuit to generate the state, we can show that our promise problem is NP-hard with respect to Cook reductions. Thus, the quantum separability problem (as phrased above) constitutes the first nontrivial promise problem decidable by a two-message quantum interactive proof system while being hard for both NP and QSZK. We also consider a variant of the problem, in which a given polynomial-time mixed-state quantum circuit accepts a quantum state as input, and the question is to decide if there is an input to this circuit which makes its output separable across some bipartite cut. We prove that this problem is a complete promise problem for the class QIP of problems decidable by quantum interactive proof systems. Finally, we show that a two-message quantum interactive proof system can also decide a multipartite generalization of the quantum separability problem.Comment: 34 pages, 6 figures; v2: technical improvements and new result for the multipartite quantum separability problem; v3: minor changes to address referee comments, accepted for presentation at the 2013 IEEE Conference on Computational Complexity; v4: changed problem names; v5: updated references and added a paragraph to the conclusion to connect with prior work on separability testin

    Logical closure properties of propositional proof systems - (Extended abstract)

    Get PDF
    In this paper we define and investigate basic logical closure properties of propositional proof systems such as closure of arbitrary proof systems under modus ponens or substitutions. As our main result we obtain a purely logical characterization of the degrees of schematic extensions of EF in terms of a simple combination of these properties. This result underlines the empirical evidence that EF and its extensions admit a robust definition which rests on only a few central concepts from propositional logic

    Infinite subgame perfect equilibrium in the Hausdorff difference hierarchy

    Full text link
    Subgame perfect equilibria are specific Nash equilibria in perfect information games in extensive form. They are important because they relate to the rationality of the players. They always exist in infinite games with continuous real-valued payoffs, but may fail to exist even in simple games with slightly discontinuous payoffs. This article considers only games whose outcome functions are measurable in the Hausdorff difference hierarchy of the open sets (\textit{i.e.} Δ20\Delta^0_2 when in the Baire space), and it characterizes the families of linear preferences such that every game using these preferences has a subgame perfect equilibrium: the preferences without infinite ascending chains (of course), and such that for all players aa and bb and outcomes x,y,zx,y,z we have ¬(z<ay<axx<bz<by)\neg(z <_a y <_a x \,\wedge\, x <_b z <_b y). Moreover at each node of the game, the equilibrium constructed for the proof is Pareto-optimal among all the outcomes occurring in the subgame. Additional results for non-linear preferences are presented.Comment: The alternative definition of the difference hierarchy has changed slightl

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Information-Sharing and Privacy in Social Networks

    Get PDF
    We present a new model for reasoning about the way information is shared among friends in a social network, and the resulting ways in which it spreads. Our model formalizes the intuition that revealing personal information in social settings involves a trade-off between the benefits of sharing information with friends, and the risks that additional gossiping will propagate it to people with whom one is not on friendly terms. We study the behavior of rational agents in such a situation, and we characterize the existence and computability of stable information-sharing networks, in which agents do not have an incentive to change the partners with whom they share information. We analyze the implications of these stable networks for social welfare, and the resulting fragmentation of the social network

    On The Power of Tree Projections: Structural Tractability of Enumerating CSP Solutions

    Full text link
    The problem of deciding whether CSP instances admit solutions has been deeply studied in the literature, and several structural tractability results have been derived so far. However, constraint satisfaction comes in practice as a computation problem where the focus is either on finding one solution, or on enumerating all solutions, possibly projected to some given set of output variables. The paper investigates the structural tractability of the problem of enumerating (possibly projected) solutions, where tractability means here computable with polynomial delay (WPD), since in general exponentially many solutions may be computed. A general framework based on the notion of tree projection of hypergraphs is considered, which generalizes all known decomposition methods. Tractability results have been obtained both for classes of structures where output variables are part of their specification, and for classes of structures where computability WPD must be ensured for any possible set of output variables. These results are shown to be tight, by exhibiting dichotomies for classes of structures having bounded arity and where the tree decomposition method is considered
    corecore