4,437 research outputs found

    Distribution Regression with Sample Selection, with an Application to Wage Decompositions in the UK

    Full text link
    We develop a distribution regression model under endogenous sample selection. This model is a semiparametric generalization of the Heckman selection model that accommodates much richer patterns of heterogeneity in the selection process and effect of the covariates. The model applies to continuous, discrete and mixed outcomes. We study the identification of the model, and develop a computationally attractive two-step method to estimate the model parameters, where the first step is a probit regression for the selection equation and the second step consists of multiple distribution regressions with selection corrections for the outcome equation. We construct estimators of functionals of interest such as actual and counterfactual distributions of latent and observed outcomes via plug-in rule. We derive functional central limit theorems for all the estimators and show the validity of multiplier bootstrap to carry out functional inference. We apply the methods to wage decompositions in the UK using new data. Here we decompose the difference between the male and female wage distributions into four effects: composition, wage structure, selection structure and selection sorting. After controlling for endogenous employment selection, we still find substantial gender wage gap -- ranging from 21% to 40% throughout the (latent) offered wage distribution that is not explained by observable labor market characteristics. We also uncover positive sorting for single men and negative sorting for married women that accounts for a substantive fraction of the gender wage gap at the top of the distribution. These findings can be interpreted as evidence of assortative matching in the marriage market and glass-ceiling in the labor market.Comment: 72 pages, 4 tables, 39 figures, includes supplement with additional empirical result

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1

    Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems

    Get PDF
    We propose an infinitesimal dispersion index for Markov counting processes. We show that, under standard moment existence conditions, a process is infinitesimally (over-) equi-dispersed if, and only if, it is simple (compound), i.e. it increases in jumps of one (or more) unit(s), even though infinitesimally equi-dispersed processes might be under-, equi- or over-dispersed using previously studied indices. Compound processes arise, for example, when introducing continuous-time white noise to the rates of simple processes resulting in Levy-driven SDEs. We construct multivariate infinitesimally over-dispersed compartment models and queuing networks, suitable for applications where moment constraints inherent to simple processes do not hold.Comment: 26 page

    Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods

    Get PDF
    Parameter estimation in multidimensional diffusion models with only one coordinate observed is highly relevant in many biological applications, but a statistically difficult problem. In neuroscience, the membrane potential evolution in single neurons can be measured at high frequency, but biophysical realistic models have to include the unobserved dynamics of ion channels. One such model is the stochastic Morris-Lecar model, defined by a nonlinear two-dimensional stochastic differential equation. The coordinates are coupled, that is, the unobserved coordinate is nonautonomous, the model exhibits oscillations to mimic the spiking behavior, which means it is not of gradient-type, and the measurement noise from intracellular recordings is typically negligible. Therefore, the hidden Markov model framework is degenerate, and available methods break down. The main contributions of this paper are an approach to estimate in this ill-posed situation and nonasymptotic convergence results for the method. Specifically, we propose a sequential Monte Carlo particle filter algorithm to impute the unobserved coordinate, and then estimate parameters maximizing a pseudo-likelihood through a stochastic version of the Expectation-Maximization algorithm. It turns out that even the rate scaling parameter governing the opening and closing of ion channels of the unobserved coordinate can be reasonably estimated. An experimental data set of intracellular recordings of the membrane potential of a spinal motoneuron of a red-eared turtle is analyzed, and the performance is further evaluated in a simulation study.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS729 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Ellipsoidal Prediction Regions for Multivariate Uncertainty Characterization

    Get PDF
    While substantial advances are observed in probabilistic forecasting for power system operation and electricity market applications, most approaches are still developed in a univariate framework. This prevents from informing about the interdependence structure among locations, lead times and variables of interest. Such dependencies are key in a large share of operational problems involving renewable power generation, load and electricity prices for instance. The few methods that account for dependencies translate to sampling scenarios based on given marginals and dependence structures. However, for classes of decision-making problems based on robust, interval chance-constrained optimization, necessary inputs take the form of polyhedra or ellipsoids. Consequently, we propose a systematic framework to readily generate and evaluate ellipsoidal prediction regions, with predefined probability and minimum volume. A skill score is proposed for quantitative assessment of the quality of prediction ellipsoids. A set of experiments is used to illustrate the discrimination ability of the proposed scoring rule for misspecification of ellipsoidal prediction regions. Application results based on three datasets with wind, PV power and electricity prices, allow us to assess the skill of the resulting ellipsoidal prediction regions, in terms of calibration, sharpness and overall skill.Comment: 8 pages, 7 Figures, Submitted to IEEE Transactions on Power System

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3,4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.
    corecore