364 research outputs found

    Lict edge semientire graph of a planar graph.

    Get PDF
    In this paper, we introduce the concept of the Lict edge semientire graph of a planar graph. We present characterizations of graphs whose lict edge semientire graphs are planar, outerplanar and Maximal outerplanar, crossing number one. Further, we establish a characterization of graphs whose lict edge semi entire graphs are Eularian and Hamiltonian

    Structure and properties of maximal outerplanar graphs.

    Get PDF
    Outerplanar graphs are planar graphs that have a plane embedding in which each vertex lies on the boundary of the exterior region. An outerplanar graph is maximal outerplanar if the graph obtained by adding an edge is not outerplanar. Maximal outerplanar graphs are also known as triangulations of polygons. The spine of a maximal outerplanar graph G is the dual graph of G without the vertex that corresponds to the exterior region. In this thesis we study metric properties involving geodesic intervals, geodetic sets, Steiner sets, different concepts of boundary, and also relationships between the independence numbers and domination numbers of maximal outerplanar graphs and their spines. In Chapter 2 we find an extension of a result by Beyer, et al. [3] that deals with Hamiltonian degree sequences in maximal outerplanar graphs. In Chapters 3 and 4 we give sharp bounds relating the independence number and domination number, respectively, of a maximal outerplanar graph to those of its spine. In Chapter 5 we discuss the boundary, contour, eccentricity, periphery, and extreme set of a graph. We give a characterization of the boundary of maximal outerplanar graphs that involves the degrees of vertices. We find properties that characterize the contour of a maximal outerplanar graph. The other main result of this chapter gives characterizations of graphs induced by the contour and by the periphery of a maximal outerplanar graph. In Chapter 6 we show that the generalized intervals in a maximal outerplanar graph are convex. We use this result to characterize geodetic sets in maximal outerplanar graphs. We show that every Steiner set in a maximal outerplanar graph is a geodetic set and also show some differences between these types of sets. We present sharp bounds for geodetic numbers and Steiner numbers of maximal outerplanar graphs

    Graphs with Plane Outside-Obstacle Representations

    Full text link
    An \emph{obstacle representation} of a graph consists of a set of polygonal obstacles and a distinct point for each vertex such that two points see each other if and only if the corresponding vertices are adjacent. Obstacle representations are a recent generalization of classical polygon--vertex visibility graphs, for which the characterization and recognition problems are long-standing open questions. In this paper, we study \emph{plane outside-obstacle representations}, where all obstacles lie in the unbounded face of the representation and no two visibility segments cross. We give a combinatorial characterization of the biconnected graphs that admit such a representation. Based on this characterization, we present a simple linear-time recognition algorithm for these graphs. As a side result, we show that the plane vertex--polygon visibility graphs are exactly the maximal outerplanar graphs and that every chordal outerplanar graph has an outside-obstacle representation.Comment: 12 pages, 7 figure

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Definability Equals Recognizability for kk-Outerplanar Graphs

    Get PDF
    One of the most famous algorithmic meta-theorems states that every graph property that can be defined by a sentence in counting monadic second order logic (CMSOL) can be checked in linear time for graphs of bounded treewidth, which is known as Courcelle's Theorem. These algorithms are constructed as finite state tree automata, and hence every CMSOL-definable graph property is recognizable. Courcelle also conjectured that the converse holds, i.e. every recognizable graph property is definable in CMSOL for graphs of bounded treewidth. We prove this conjecture for kk-outerplanar graphs, which are known to have treewidth at most 3k−13k-1.Comment: 40 pages, 8 figure
    • …
    corecore