An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Yasuaki Kobayashi ${ }^{1}$, Hiromu Ohtsuka ${ }^{2}$, and Hisao Tamaki ${ }^{3}$

1 Kyoto University, Kyoto, Japan kobayashi@iip.ist.i.kyoto-u.ac.jp
2 Meiji University, Kanagawa, Japan
ohtsuka_yumecs.meiji.ac.jp
3 Meiji University, Kanagawa, Japan
tamaki@cs.meiji.ac.jp

Abstract

Book embedding is one of the most well-known graph drawing models and is extensively studied in the literature. The special case where the number of pages is one is of particular interest: an embedding in this case has a natural circular representation useful for visualization and graphs that can be embedded in one page without crossings form an important graph class, namely that of outerplanar graphs.

In this paper, we consider the problem of minimizing the number of crossings in a one-page book embedding, which we call one-page crossing minimization. Here, we are given a graph G with n vertices together with a non-negative integer k and are asked whether G can be embedded into a single page with at most k crossings. Bannister and Eppstein (GD 2014) showed that this problem is fixed-parameter tractable. Their algorithm is derived through the application of Courcelle's theorem (on graph properties definable in the monadic second-order logic of graphs) and runs in $f(L) n$ time, where $L=2^{O\left(k^{2}\right)}$ is the length of the formula defining the property that the one-page crossing number is at most k and f is a computable function without any known upper bound expressible as an elementary function. We give an explicit dynamic programming algorithm with a drastically improved running time of $2^{O(k \log k)} n$.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph Theory

Keywords and phrases Book Embedding, Fixed-Parameter Tractability, Graph Drawing, Treewidth

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.25

1 Introduction

In book embeddings, a graph is drawn in such a way that the vertices are aligned on a straight line, called the spine, as distinct points and each edge is drawn as a semicircle in a half plane defined by the spine. We call this half plane a page. In general, multiple pages are required to draw a graph without introducing any edge crossings, where a crossing is defined by a pair of edges that has a non-empty intersection distinct from their end vertices. The minimum number of pages we need to draw a graph without edge crossings, called page number or book thickness, is extensively studied in the literature (e.g. [3, 23]). The problem of computing page number is known to be NP-hard. More precisely, deciding if a given graph can be drawn in two pages without any crossing is NP-complete [7].

An optimization problem with an objective function different from the crossing number has also been studied. In this problem, given a graph G and a small integer p, the objective

© Yasuaki Kobayashi, Hiromu Ohtsuka, and Hisao Tamaki;
licensed under Creative Commons License CC-BY
12th International Symposium on Parameterized and Exact Computation (IPEC 2017)
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 25; pp. 25:1-25:12
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 1 A one-page drawing and a circular drawing of a graph.
is to minimize the total number of crossings in a drawing of G with at most p pages. This optimization problem is known as p-page crossing minimization and is introduced by Shahrokhi et al. [20]. Since the problem of deciding whether the page number of a graph is at most two is NP-complete [7], two-page crossing minimization is NP-hard. Indeed, the simplest case of one-page crossing minimization is already interesting. One-page crossing number is studied under various names such as circular crossing number, convex crossing number, and outerplanar crossing number. See [15] for example. In circular drawings, each vertex is placed on the circumference of a circular disk and each edge is drawn inside of the disk as a straight line segment. A one-page drawing may be turned into a circular drawing by topologically mapping the spine into a circle, identifying the positive and negative infinities, and mapping the half-plane into the disc enclosed by the circle. (See Figure 1, for an example). This mapping clearly preserves crossings.

One-page drawing (and hence circular drawing) with fewer crossings is important in several fields. This drawing style is frequently studied in the graph drawing community. Some well-known graph drawing software such as Graphviz ${ }^{1}$ and yFiles ${ }^{2}$ can produce good circular drawings. Blin et al. [4] suggested to use one-page crossing number for computing a similarity of mRNA sequences that have some secondary structures. In their paper, they asked for a fast algorithm to compute a one-page drawing with the fewest crossings.

Unfortunately, the problem of computing one-page crossing number is NP-hard as shown by Masuda et al. [18]. There are some results for special graph classes [12, 13] and some heuristics [2, 17, 21]. Bannister and Eppstein [1] tackled this problem from the perspective of parameterized complexity. They showed that the treewidth of graphs with at most k crossings is $O(\sqrt{k})$ and that the graph property of having at most k crossings can be defined by a formula of length $L=2^{O\left(k^{2}\right)}$ in monadic second-order logic of graphs. These results are sufficient for the application of Courcelle's theorem $[8,9]$ to obtain an $f(L) n$ time algorithm for deciding if the one-page crossing number of a given graph is at most k, where n is the number of vertices and f is a computable function without any known upper bound expressible as an elementary function [11].

This situation is in contrast to that in the related research area of layered graph drawings, where vertices are placed on h parallel lines and each edge is drawn as a straight line segment between two adjacent parallel lines. Dujmović et al. [10] gave an explicit $2^{O(h+k)^{3}} n$ time dynamic programming algorithm based on path-decompositions to decide if a given graph has h-layer drawing with at most k crossings.

In this paper, we give an explicit tree decomposition based dynamic programming algorithm for one-page crossing minimization.

[^0]- Theorem 1. There is an algorithm which, given a graph G and a non-negative integer k, decides whether G has a one-page drawing with at most k crossings in $2^{O(k \log k)} n$ time, where n is the number of vertices of G. Moreover, if the answer is affirmative, the algorithm produces an optimal one-page drawing within the same running time.

We would like to mention that this and the algorithm of Bannister and Eppstein [1] run in linear time, which generalize linear time algorithms recognizing and drawing outerplanar graphs [19, 22].

We borrow two tools from Bannister and Eppstein [1]. One is the upper bound on the treewidth of a graph of one-page crossing number k mentioned above. The other is the concept of "crossing diagrams" which are used to classify YES-instances of the decision problem. For each such diagram, they construct a formula of length $k^{O(1)}$ for recognizing YES-instances conforming to the diagram and then take a disjunction of the formulas for all the diagrams. There are $2^{O\left(k^{2}\right)}$ crossing diagrams and therefore the total formula length is $2^{O\left(k^{2}\right)}$. We use a similar structure, which we call a "sketch", in our dynamic programming algorithm and obtain an upper bound of $2^{O(k \log k)}$ on the number of sketches through a similar but indeed somewhat finer analysis (see the proof of Lemma 14). We, however, remark that there is a fundamental difference between crossing diagrams and sketches. A crossing diagram represents a "type" of YES-instances and, for each fixed type, we need to examine each given instance for acceptance by a formula or an algorithm. On the other hand, a sketch is a succinct summary of a drawing of a subgraph. We define the "validity" of a sketch in such a way that a valid sketch of the entire graph is an immediate certificate for the positive answer to the instance and the validity of sketches can be efficiently determined by dynamic programming on a tree decomposition. We also remark that such a succinct representation is made possible by our observation on one-page drawings of biconnected graphs, which we call the chain lemma (see Section 2).

2 Preliminaries

Let G be a graph. The set of vertices of G is denoted by $V(G)$ and the set of edges of G by $E(G)$. For each $v \in V(G), N_{G}(v)$ denotes the set of neighbors of v in $G: N_{G}(v)=\{u \in$ $V(G) \mid\{u, v\} \in E(G)\}$. For $X \subseteq V(G), G[X]$ denotes the subgraph of G induced by X and $N_{G}(X)=\left(\bigcup_{v \in X} N_{G}(v)\right)$ denotes the set of neighbors of X.

As we have mentioned, a one-page drawing and a circular drawing are equivalent for our purposes. Therefore, we will work on circular drawings, and whenever we refer to drawings, we always refer to circular drawings. For a drawing D of G, we write $\operatorname{cr}(D)$ to denote the number of crossings in D. The one-page crossing number $\operatorname{cr}_{1}(G)$ of G is the minimum integer k such that G has a circular drawing of k crossings.

Let D be a drawing of G. We write $V(D)$ and $E(D)$ to denote $V(G)$ and $E(G)$, respectively. We denote by cycle (D) the cycle on $V(D)$ induced by the circle on which the vertices are drawn: two vertices are adjacent to each other in cycle (D) if they are consecutively placed on this circle. As special cases, if $V(D)$ is empty then cycle (D) is an empty graph; if $V(D)$ is a singleton, then cycle (D) is a self-loop; if $|V(D)|=2$, then cycle (D) is a multigraph consisting of two parallel edges between the two vertices. Note that D is essentially determined by $V(D), E(D)$, and cycle (D). For $X \subseteq V(D)$, we denote by $D \mid X$ the subdrawing of D induced by X, that is, the drawing obtained from D by deleting all vertices in $V(D) \backslash X$. An extension of D is a drawing obtained by adding some vertices and edges to D.

- Definition 2. A tree decomposition of G is a tree T where each $t \in V(T)$ is associated with $X_{t} \subseteq V(G)$, called a bag, such that
- $\bigcup_{t \in V(T)} X_{t}=V(G)$,
- for each $\{u, v\} \in E(G)$, there is $t \in V(T)$ with $\{u, v\} \subseteq X_{t}$, and
- for each $u \in V(G)$, the subgraph of T induced by $\left\{t \in V(T): u \in X_{t}\right\}$ is connected.

The width of a tree decomposition $\left(T,\left\{X_{t}: t \in V(T)\right\}\right)$ is the maximum size of a bag minus one. The treewidth of G is the minimum integer w such that G has a tree decomposition of width w.

To distinguish between vertices of G and those of T, we call the vertices of T nodes. We assume, in the rest of the paper, that tree decompositions are rooted. For a node $t \in V(T)$, we define $V_{t}=\bigcup_{t^{\prime} \in V\left(T_{t}\right)} X_{t^{\prime}}$, where T_{t} is the subtree of T rooted at t.

- Definition 3. A tree decomposition T is nice if for each node t of T, exactly one of the following conditions is satisfied.
- t is a leaf of T with $X_{t}=\emptyset$,
- t has exactly one child t^{\prime} with $X_{t}=X_{t^{\prime}} \backslash\{v\}$ for some $v \in X_{t^{\prime}}$,
- t has exactly one child t^{\prime} with $X_{t}=X_{t^{\prime}} \cup\{v\}$ for some $v \notin X_{t^{\prime}}$, or
- t has exactly two children t_{1} and t_{2} with $X_{t}=X_{t_{1}}=X_{t_{2}}$.

We respectively call nodes that satisfy the above conditions, leaf nodes, forget nodes, introduce nodes, and join nodes.

- Lemma 4 ([16]). Suppose we are given a graph G and its tree decomposition of width w. Then, there is a nice tree decomposition of G of width at most w such that it has $O(w n)$ nodes, where n is the number of vertices of G. Moreover, such a nice tree decomposition can be computed in $O\left(w^{2} n\right)$ time.

The following lemma is a well-known characterization of crossing-free drawings.

- Lemma 5 (Theorem 2.5 in [3]). For every graph $G, \operatorname{cr}_{1}(G)=0$ if and only if G is outerplanar.

Since every outerplanar graph has treewidth at most 2 , we immediately have an upper bound on the treewidth with respect to its one-page crossing number: $\operatorname{tw}(G)=O\left(\operatorname{cr}_{1}(G)\right)$. Bannister and Eppstein [1] gave a tighter bound.

- Lemma 6 (Lemma 5 in [1]). For every graph $G, \operatorname{tw}(G)=O\left(\sqrt{\operatorname{cr}_{1}(G)}\right)$.

The following simple lemma is used in some previous results (see [1], for example).

- Lemma 7. Let $G_{1}, G_{2}, \ldots, G_{t}$ be the biconnected components of G. Then, $\operatorname{cr}_{1}(G)=$ $\sum_{1 \leq i \leq t} \mathrm{cr}_{1}\left(G_{i}\right)$.

Owing to this lemma, we will henceforth assume that the given graph is biconnected. We prove below a lemma crucial in exploiting the biconnectivity in our algorithm. This lemma generalizes the Hamiltonicity of biconnected outerplanar graphs with at least three vertices [6].

Let D be a drawing of G. A path in G is a chain in D if it is also a path in cycle (D). We say that a vertex is chained in D if it is an internal vertex of a chain.

- Lemma 8 (Chain lemma). Let G be a biconnected graph with at least three vertices and let D be a drawing of G. Then every vertex not incident to any crossing edge in D is chained in D.

Proof. Let u be a vertex of G not incident to any crossing edge. Let v_{1} and v_{2} be the two neighbors of u in cycle (D). As G is biconnected, u has at least two neighbors in G. If u has no neighbor distinct from both v_{1} and v_{2}, we are done. Suppose otherwise: u has a neighbor x with $x \notin\left\{v_{1}, v_{2}\right\}$. Let P_{1} and P_{2} be internally disjoint paths between v_{1} and v_{2}, which exist since G is biconnected. Since $\{u, x\}$ is not a crossing edge, one of the path, say P_{1}, contains u and the other one, say P_{2}, contains x. Suppose P_{1} does not go through edge $\left\{v_{1}, u\right\}$. Let y be the vertex adjacent to u on the subpath of P_{1} between v_{1} and u. Then, the edge $\{y, u\}$ must cross an edge in P_{2}, contradicting the assumption that u is not incident to a crossing edge. Hence P_{1} must go through edge $\left\{v_{1}, u\right\}$. A symmetric argument shows that P_{1} also goes through $\left\{v_{2}, u\right\}$. Therefore, u is chained in D.

3 Colored drawings and sketches

In our dynamic programming algorithm, for each node t of a given tree decomposition, we enumerate structures we call "sketches" which succinctly describe drawings of $G\left[V_{t}\right]$. To establish recurrences among sketches, it turns out necessary for the drawings described by sketches to carry some information on our plan on how to extend those drawings to the final drawing of G.

We use colors on vertices, black, white, and gray, to represent this information. A colored drawing of graph H is a triple (D, B, W) where B and W are disjoint subsets of $V(H)$ and D is a drawing of H, such that every vertex incident to a crossing edge in D belongs to B. We call the vertices in B black, those in W white, and all others gray. If C is the colored drawing (D, B, W), then we write $V(C), E(C)$, and cycle (C) to denote $V(D), E(D)$, and cycle (D), respectively. We use $B(C)$ and $W(C)$ to denote the set of black vertices and the set of white vertices of C, respectively. For $U \subseteq V(C)$, we write $C \mid U$ to denote the colored drawing $(D \mid U, B \cap U, W \cap U)$.

In the above definition, both ends of a crossing edge must be black in a colored drawing, but not vice versa: a black vertex is not necessarily incident to any crossing edge. A vertex being black rather indicates our plan that it can be incident to any crossing edges in the extension of the drawing of a subgraph of G into the drawing of the entire G. We need some more definitions to explain the intention of the other two colors.

Let C be a colored drawing. We say that C respects $X \subseteq V(C)$ if $V(C)=B(C) \cup W(C) \cup X$ and $W(C) \cap X=\emptyset$. Note that if C respects X then every vertex in X is either black or gray, while every vertex not in X is either black or white. We will often consider a colored drawing of an induced subgraph $G[U]$ of the given graph G, where U is accompanied with a boundary X of U, a subset of U such that $N_{G}(U \backslash X) \subseteq X$. In those situations, we will require each colored drawing of U to respect X. This ensures that there is no edge between white vertices in U and the vertices in $V(G) \backslash U$. Thus, white vertices will never be adjacent to vertices introduced in the extensions.

Let C and C^{\prime} be colored drawings of graphs H and H^{\prime} respectively, such that $|V(H)|=$ $\left|V\left(H^{\prime}\right)\right|$. A bijection $\phi: V(H) \rightarrow V\left(H^{\prime}\right)$ is an isomorphism from C to C^{\prime} if it is an isomorphism from H to $H^{\prime}(u, v \in V(H)$ are adjacent to each other in H if and only if $\phi(u)$ and $\phi(v)$ are adjacent to each other in H^{\prime}), is an isomorphism of cycle (C) to cycle $\left(C^{\prime}\right)$, and preserves the coloring $\left(\phi(B)=B^{\prime}\right.$, and $\left.\phi(W)=W^{\prime}\right)$. Suppose $V(H)$ and $V\left(H^{\prime}\right)$ intersect each other and let $X \subseteq V(H) \cap V\left(H^{\prime}\right)$. We call an isomorphism ϕ from C to C^{\prime} an X isomorphism if ϕ fixes each vertex of $x \in X$, that is, $\phi(x)=x$. If there is an isomorphism (X-isomorphism) from C to C^{\prime}, then we say C and C^{\prime} are isomorphic (X-isomorphic) to each other and that each of them is an isomorph (X-isomorph) of each other.

Let C be a colored drawing. We say that C is well-formed if every white vertex of C is chained in C. It will turn out in Section 4 that to inductively construct drawings of G (which we are assuming is biconnected), it suffices to consider only well-formed drawings.

We now define "sketches" which describe colored drawings. Let C be a well-formed colored drawing. A chain in C is white if every vertex in the chain is white. The contraction of C is the colored drawing obtained from C by contracting each maximal white chain into a single white vertex (which inherits all neighbors from the vertices of the chain). Let us note that the contraction of C is unique up to isomorphism. The contraction of C is well-formed since we are assuming that C is well-formed. Moreover, the contraction operation preserves crossings: it does not introduce any new crossings or, since the vertices contracted are white (and hence are not incident any crossing edges), does not remove any crossings. We say that C is contracted if it does not contain any white chain with at least two vertices and hence is the contraction of itself.

Let X be a vertex set. A sketch on X is a well-formed and contracted colored drawing that respects X. Let C be a well-formed colored drawing of graph H that respects some vertex set $X \subseteq V(H)$. Let S be a sketch on X. We say that S describes C if S is X-isomorphic to the contraction of C.

4 Recurrences

In this section, we fix a nice tree decomposition T of G, and use the notation X_{t} and V_{t}, where t is a node of T, introduced in Section 2.

We say that a sketch S on X_{t} is valid for V_{t} if there is a well-formed colored drawing C of $G\left[V_{t}\right]$ that respects X_{t} and is described by S. For brevity, we say a sketch on t to mean a sketch on X_{t} and also say that a sketch is valid on t, or simply valid if t is clear from the context, to mean that it is valid for V_{t}.

Our dynamic programming algorithm enumerates, for each t, all valid sketches on t that are small in the sense defined later. In the following lemmas, we establish recurrences that can be used to inductively decide if a given sketch on t is valid, based on the validity of sketches on t^{\prime} for child nodes t^{\prime} of t

Leaf node

- Observation 9. Let t be a leaf node of T. Then, the empty sketch $\left(D_{\emptyset}, \emptyset, \emptyset\right)$ on $X_{t}=\emptyset$, where D_{\emptyset} is an empty drawing, is valid.

Forget node

Let t be a forget node in T and t^{\prime} the unique child of t. Let $v \in V_{t^{\prime}}$ be the vertex forgotten: $X_{t}=X_{t^{\prime}} \backslash\{v\}$. Let S be a sketch on X_{t} and S^{\prime} a sketch on $X_{t^{\prime}}$. We say that S is the parent of S^{\prime} if either
F1 $v \in B\left(S^{\prime}\right)$ and $S=S^{\prime}$ or
F2 $v \notin B\left(S^{\prime}\right), v$ is chained in S^{\prime}, and S is the contraction of the colored drawing obtained from S^{\prime} by changing the color of v from gray to white (which is well-formed since v is chained).

We say that S^{\prime} is a child of S if S is the parent of S^{\prime}. Note that the parent of a sketch on $X_{t^{\prime}}$ is unique if one exists, while a sketch on X_{t} may have any number of children: zero, one, or more.

Figure 2 The figure shows an example of a sketch on a forget node t. The top figure depicts a sketch on X_{t} and the bottom figures depict some of its children. Here, $X_{t}=\{a, b, c, d, e, f, g\}$ and $v \in X_{t^{\prime}} \backslash X_{t}$ is the vertex forgotten.

- Lemma 10. Let t be a forget node and t^{\prime} its unique child node. Then, a sketch on t is valid if and only if it has a child that is valid on t^{\prime}.

Proof. Let v the vertex forgotten at node $t: X_{t}=X_{t^{\prime}} \backslash\{v\}$.
Let S be a valid sketch on t. Let C denote the well-formed colored drawing of $G\left[V_{t}\right]$ that respects X_{t} and is described by S. Since $v \in V_{t} \backslash X_{t}$ and C respects X_{t}, we have either $v \in B(C)$ or $v \in W(C)$.

Suppose first that $v \in B(C)$. Then, since sketch S describes C, we have $v \in B(S)$. Then, S is a sketch on t^{\prime} and, by Case F1, it is a child of S itself. Moreover, as $W(C) \cap X_{t^{\prime}}=$ $W(C) \cap\left(X_{t} \cup\{v\}\right)=W(C) \cap X_{t}=\emptyset, C$ respects $X_{t^{\prime}}$ as well. Since S is a sketch on t^{\prime} and describes a colored drawing C for $G\left[V_{t^{\prime}}\right]=G\left[V_{t}\right]$ that respects $X_{t^{\prime}}$, it is valid on t^{\prime}. Therefore, we are done in this case.

Suppose next that $v \in W(C)$. Let C^{\prime} be the colored drawing of $G\left[V_{t^{\prime}}\right]=G\left[V_{t}\right]$ that is identical to C except that the color of v is gray instead of white. Since every white vertex of C^{\prime} is chained as it is chained in C, C^{\prime} is well-formed. Since $W\left(C^{\prime}\right) \cap X_{t^{\prime}}=$ $(W(C) \backslash\{v\}) \cap\left(X_{t} \cup\{v\}\right)=W(C) \cap X_{t}=\emptyset, C^{\prime}$ respects $X_{t^{\prime}}$. Let S^{\prime} be the sketch on $X_{t^{\prime}}$ that describes C^{\prime}, which is unique up to $X_{t^{\prime}}$-isomorphisms. Then, as $v \notin B\left(C^{\prime}\right)$ and the $X_{t^{\prime}}$-isomorphism from S^{\prime} to the contraction of C^{\prime} fixes $v \in X_{t^{\prime}}$, we have $v \notin B\left(S^{\prime}\right)$. Since v is white in C and C is well-formed, v is chained in C and hence in C^{\prime}. As v is gray in C^{\prime} the contraction of C^{\prime} keeps v chained in S^{\prime}. Therefore, Case F2 applies and we obtain the parent $S^{\prime \prime}$ of S^{\prime} by turning the gray vertex v white and then contracting the result. We may view the relationship between C and $S^{\prime \prime}$ as follows: we first turn the color of v in C from white to gray and contract the result C^{\prime} to obtain S^{\prime} through an $X_{t^{\prime}}$ isomorphism; then, we turn v white and further contract the result into $S^{\prime \prime}$. The contraction of C in one step gives us an $X_{t^{t}}$-isomorph of $S^{\prime \prime}$ which, since S describes C by assumption, is an X_{t}-isomorph of S as well. As $S^{\prime \prime}$ is the parent of S^{\prime} and is $X_{t^{\prime}}$-isomorphic to S, S has a child that is $X_{t^{\prime}}$-isomorphic to S^{\prime}. Since S^{\prime} describes C^{\prime}, this child of S is valid and we are done in this case as well.

For the converse, suppose that S has a valid child S^{\prime}. Let C^{\prime} be a well-formed colored drawing of $G\left[V_{t^{\prime}}\right]$ that respects $X_{t^{\prime}}$ and is described by S^{\prime}. First suppose $v \in B\left(C^{\prime}\right)$. Since $v \in X_{t^{\prime}}$, the $X_{t^{\prime}}$-isomorphism from S^{\prime} to the contraction of C^{\prime} fixes v. Therefore, we have $v \in B\left(S^{\prime}\right)$. Case F1 applies and we have $S=S^{\prime}$. Since S describes C^{\prime} and C^{\prime} respects $X_{t} \subseteq X_{t^{\prime}}, S$ is valid on t and we are done in this case.

Figure 3 The figures show an example of sketches on an introduce node t. The bottom figure depicts a sketch on $X_{t^{\prime}}$ and the top figures depict some of its parents. Here, $X_{t}=\{a, b, c, d, e, f, g, v\}$ and $v \in X_{t} \backslash X_{t^{\prime}}$ is the vertex introduced.

So suppose that $v \notin B\left(C^{\prime}\right)$. Then we have $v \notin B\left(S^{\prime}\right)$ and Case F2 must apply since S^{\prime} is a child of S. Let C be the colored drawing of $G\left[V_{t}\right]=G\left[V_{t^{\prime}}\right]$ which is identical to C^{\prime} except that the color of v is turned white from gray. Since v is chained in S^{\prime} by the condition of Case F2 and the $X_{t^{\prime}}$ isomorphism from S^{\prime} to the contraction of C^{\prime} fixes v, v is chained in C^{\prime} and hence in C. We may obtain an X_{t}-isomorph of S from C by turning the color of v gray, contracting the result C^{\prime} into an $X_{t^{\prime}}$ isomorph of S^{\prime}, turning the color of v back to white, and then contracting the result. Since v is chained in C, we may perform the contraction in one step, which shows that S describes C and hence is valid on t.

Introduce node

Let t be an introduce node in T and t^{\prime} the unique child of t. Let $v \in X_{t}$ be the vertex introduced: $X_{t}=X_{t^{\prime}} \cup\{v\}$. Let S be a sketch on X_{t} and S^{\prime} a sketch on $X_{t^{\prime}}$. We say that S^{\prime} is the child of S if either

1. $\left|X_{t}\right|=1$ and S^{\prime} is an unique empty sketch, or
2. $\left|X_{t}\right|>1, S^{\prime}=S \mid V_{t^{\prime}}$, and neither of the two vertices in $N_{\text {cycle }(S)}(v)$, which are not necessarily distinct, are white in S.
Note that $V_{t^{\prime}}=V_{t} \backslash\{v\}$ and hence S^{\prime} is obtained from S by removing v. We say that S is a parent of S^{\prime} if S^{\prime} is the child of S. Note that the child of a sketch on X_{t} is unique up to isomorphism if one exists, while a sketch on $X_{t^{\prime}}$ may have more than one parent in general.

- Lemma 11. Let t be an introduce node and t^{\prime} a unique child of t. A sketch S on t is valid if and only if it has a child that is valid on t^{\prime}.

Proof. Let v be the vertex introduced in $t: X_{t}=X_{t^{\prime}} \cup\{v\}$. We only prove the case 2, since the case 1 is straightforward.

Suppose that S is a valid sketch on t such that $\left|X_{t}\right|>1$. Let C be a well-formed colored drawing of $G\left[V_{t}\right]$ that respects X_{t} and is described by S. Since $v \in X_{t}$ and C respects X_{t}, v is either black or gray in C. Let $C^{\prime}=C \mid V_{t^{\prime}}$. Since $V_{t}=V_{t^{\prime}} \cup\{v\}, C^{\prime}$ is obtained from C by removing v. Let u be a vertex adjacent to v in cycle (C). If $u \in W(C)$ then u must be chained in C since C is well-formed. But this is a contradiction, since $v \notin V_{t^{\prime}}$ has no neighbor in $W(C)=W\left(C^{\prime}\right) \subseteq V_{t^{\prime}} \backslash X_{t^{\prime}}$. Therefore, we conclude that neither of the two vertices in $N_{\text {cycle }(C)}(v)$ are white in C. Since the contraction of C does not change this local
structure around v, the vertices in $N_{\text {cycle }(C)}(v)$ correspond to those in $N_{\text {cycle }(S)}(v)$ through the X_{t}-isomorphism from S to the contraction of C. Therefore, S satisfies the condition for having a child. Let S^{\prime} be the child of S. Since C and C^{\prime} have the same set of maximal white chains, the $X_{t^{\prime}}$-isomorphism from S to the contraction of C gives an $X_{t^{\prime}}$-isomorphism from S^{\prime} to the contraction of C^{\prime}, when restricted to $V\left(S^{\prime}\right)=V(S) \backslash\{v\}$. Therefore, S^{\prime} is valid.

For the converse, suppose S has a child S^{\prime} that is valid on t^{\prime}. Let C^{\prime} be a well-formed colored drawing of $G\left[V_{t^{\prime}}\right]$ that respects $X_{t^{\prime}}$ and is described by S^{\prime}. Let v_{1} and v_{2} be the two vertices in $N_{\text {cycle }(S)}(v)$. Each of v_{1} and v_{2} is either black or gray in S, since S has a child. Since S respects X_{t} and $v \in X_{t}, v$ is also either black or gray. Since v_{1} and v_{2} are adjacent to each other in cycle $\left(S^{\prime}\right)$, the $X_{t^{\prime}}$-isomorphism from S^{\prime} to the contraction of C^{\prime} maps v_{1} and v_{2} to vertices v_{1}^{\prime} and v_{2}^{\prime} of C^{\prime} that are either black or gray in C^{\prime} and are adjacent to each other in cycle $\left(C^{\prime}\right)$. Let D be the drawing of $G\left[V_{t}\right]$ obtained from the drawing of C^{\prime} by adding v between v_{1}^{\prime} and v_{2}^{\prime}. Let $C=\left(D, B, W\left(C^{\prime}\right)\right)$, where $B=B\left(C^{\prime}\right) \cup\{v\}$ if $v \in B(S)$ and $B=B\left(C^{\prime}\right)$ otherwise.

We claim that C is a colored drawing. To see this, let e and f be edges of $G\left[V_{t}\right]$ that cross each other in D. If neither e nor f is incident to v, then the crossing is in C^{\prime} and hence all the ends of e and f are black in C^{\prime} and hence in C. So suppose one of e and f, say e, is incident with v. Let u_{1} be the other end of e and let u_{2} and u_{3} be the ends of f. For $i=1,2,3, u_{i}$ has a vertex u_{i}^{\prime} in S^{\prime} corresponding to u_{i} : the $X_{t^{\prime}}$ isomorphism from S^{\prime} to the contraction of C^{\prime} maps u_{i}^{\prime} to either u_{i} or the contraction of a white maximal chain containing u_{i}. Since e and f cross each other in C, the edge between v and u_{1}^{\prime} and the edge between u_{2}^{\prime} and u_{3}^{\prime} must cross each other in S. As sketch S is a colored drawing, $v, u_{1}^{\prime}, u_{2}^{\prime}$, and u_{3}^{\prime} are black in S. By the definition of C, v is in C. Moreover, from the definition of the contraction, we see that u_{1}, u_{2}, and u_{3} must be black in C^{\prime} and hence in C. Therefore, C satisfies the condition for being a colored drawing. C is well-formed, since every white vertex in C is a white vertex in C^{\prime} and therefore is chained in C^{\prime} and hence in C.

Since C^{\prime} is obtained from C by removing v and neither of the two vertices in $N_{\text {cycle }(C)}(v)$ are white, C is contracted in the same way as C^{\prime} is contracted into an $X_{t^{\prime}}$ isomorph of S^{\prime}, resulting in an X_{t}-isomorph of S. Therefore S describes C and hence is valid.

Join Node

Let t be a join node with child nodes t_{1} and t_{2}. From the definition of join node, we have $X_{t}=X_{t_{1}}=X_{t_{2}}$ and $\left(V_{t_{1}} \backslash X_{t}\right) \cap\left(V_{t_{2}} \backslash X_{t}\right)=\emptyset$. We may assume that neither $V_{t_{1}} \backslash X_{t}$ nor $V_{t_{2}} \backslash X_{t}$ is empty and hence $\left|V_{t}\right| \geq 3$.

Let S be a sketch on t. Let S_{1} and S_{2} be sketches on t_{1} and t_{2}, respectively. We say that S is the parent of the pair $\left(S_{1}, S_{2}\right)$ if

1. $V\left(S_{1}\right) \backslash X_{t}$ and $V\left(S_{2}\right) \backslash X_{t}$ partition $V(S) \backslash X_{t}$,
2. there is no edge in $E(S)$ between $V\left(S_{1}\right) \backslash X_{t}$ and $V\left(S_{2}\right) \backslash X_{t}$,
3. $S_{1}=S \mid V\left(S_{1}\right)$, and
4. $S_{2}=S \mid V\left(S_{2}\right)$.

- Lemma 12. Let t be a join node with child nodes t_{1} and t_{2}. A sketch S on t is valid if and only if there are valid sketches S_{1} on t_{1} and S_{2} on t_{2} such that S is the parent of the pair $\left(S_{1}, S_{2}\right)$.

Proof. Suppose first that S is a valid sketch on t. Let C be a well-formed colored drawing of $G\left[V_{t}\right]$ that respects X_{t} and is described by S. Let $C_{i}=C \mid V_{t_{i}}$ for $i=1,2$. Then, for $i=1,2$, C_{i} is well-formed, since each white vertex $v \in C_{i}$ is chained in C and, since $v \in V_{t_{i}} \backslash X_{t}, N_{G}(v)$

Figure 4 The figures show an example of a sketch on a join node t. The top figure depicts a sketch on X_{t} and the bottom figures depict a pair of sketches whose parent is the sketch in the top figure. Here, $X_{t}=\{a, b, c, d, e, f, g\}$.
are in $V_{t_{i}}$, is chained in C_{i} as well. Moreover, for $i=1,2, C_{i}$ respects $X_{t_{i}}$. To confirm this, fix i. Since $W(C) \cap X_{t}=\emptyset$ as C respects X_{t}, we have $W\left(C_{i}\right) \cap X_{t_{i}}=\left(W(C) \cap V_{t_{i}}\right) \cap X_{t}=\emptyset$. We also have $V\left(C_{i}\right)=B\left(C_{i}\right) \cup W\left(C_{i}\right) \cup X_{t_{i}}$, since $V\left(C_{i}\right)=V(C) \cap V_{t_{i}}, B\left(C_{i}\right)=B(C) \cap V_{t_{i}}$, and $W\left(C_{i}\right)=W(C) \cap V_{t_{i}}$. Therefore, C_{i} respects $X_{t_{i}}$.

Observe that each chain in C is either entirely contained in C_{1} or entirely contained in C_{2}, as there is no edge of G between $V_{t_{1}} \backslash X_{t}$ and $V_{t_{2}} \backslash X_{t}$. Therefore, the partition $\left(V_{t_{1}} \backslash X_{t}, V_{t_{2}} \backslash X_{t}\right)$ of $V_{t} \backslash X_{t}$ induces a partition $\left(R_{1}, R_{2}\right)$ of $V(S) \backslash X_{t}$ through the $X_{t^{-}}$ isomorphism from S to the contraction of C. There is no edge in $E(S)$ between R_{1} and R_{2}, since such an edge would correspond to an edge between $V_{t_{1}} \backslash X_{t}$ and $V_{t_{2}} \backslash X_{t}$, contradicting the definition of a join node. Therefore, S is the parent of the pair $\left(S_{1}, S_{2}\right)$, where S_{i} for $i=1,2$ is defined by $S_{i}=S \mid\left(R_{i} \cup X_{t}\right)$. The contraction of C to an X_{t}-isomorph of S induces the contraction of C_{i} to an X_{t}-isomorph of S_{i}, for $i=1,2$. Therefore, S_{i} describes C_{i} and hence is valid, for $i=1,2$.

For the converse, suppose S is the parent of a pair $\left(S_{1}, S_{2}\right)$ where S_{i} is a valid sketch on t_{i}, for $i=1,2$. For $i=1,2$, let C_{i} be a well-formed colored drawing of $G\left[V_{t_{i}}\right]$ that respects $X_{t_{i}}$ and is described by S_{i}. We combine C_{1} and C_{2} into a colored drawing C of $G\left[V_{t}\right]$ as follows. We take the sketch S and replace each vertex $v \in V(S)$ as follows. If $v \in X_{t}$ then we keep v as it is. If $v \in B\left(S_{1}\right) \backslash X_{t}$, then we replace v by the vertex of C_{1} to which v is mapped by the X_{t}-isomorphism from S_{1} to the contraction of C_{1}; the case $v \in B\left(S_{2}\right) \backslash X_{t}$ is similar. If $v \in W\left(S_{1}\right)$, then we replace v by the maximal white chain of C_{1}, the contraction of which v is mapped to by the X_{t}-isomorphism from S_{1} to the contraction of C_{1}; the case $v \in W\left(S_{2}\right)$ is similar. We let the resulting colored drawing be C. All edges of the drawing except for those in the maximal white chains correspond to edges in S and edges in white chains are not crossing. Therefore, every vertex incident to a crossing edge is colored black in C as it is in S and hence C is indeed a colored drawing. That C respects X_{t} is trivial. To see that C is well-formed, let w be a white vertex of C. Then, either w corresponds to a white vertex of S or w is in a white chain that corresponds to a white vertex of S. Since this white vertex in S is chained since S is well-formed, w is chained in C. Finally, combining the contractions of C_{i} into X_{t}-isomorphs of S_{i} for $i=1,2$, we get the contraction of C into an X_{t}-isomorph of S. Therefore, S describes C and hence is valid.

5 Algorithm

By Lemma 7, we can solve our problem independently for each biconnected component of G. Moreover, the biconnected components can be computed in linear time [14]. When the treewidth of G is larger than $c \sqrt{k}$ for some constant $c>0$, by Lemma 6 , we can conclude $\mathrm{cr}_{1}(G)>k$. Thus, in the following, we can assume that the given graph G is biconnected and its treewidth is at most $c \sqrt{k}$. Applying the algorithm of Bodlaender et al. [5], we can obtain a tree decomposition of G whose width is $O(\sqrt{k})$ in $2^{O(\sqrt{k})} n$ time and its nice tree decomposition by Lemma 4.

We say that a sketch is small if it has at most $4 k$ black vertices and contains at most k crossings. Our dynamic programming algorithms inductively enumerates the set of all valid sketches on t that are small, for each node t of the nice tree decomposition, using the recurrences established in the previous section. The dynamic programming table for t contains one representative sketch from each X_{t}-isomorphism class. It is straightforward to verify that, to decide if a small sketch on t is valid or not, only small sketches on child node(s) of t need to be examined. Thus, the computation gives us the set of all small and valid sketches on the root of the tree decomposition. Therefore, the proof of the correctness of our algorithm lies in showing the following lemma.

Lemma 13. G has a drawing with at most k crossings if and only if there is a small sketch on \emptyset that is valid for $V(G)$.

Proof. Suppose first that there is a small sketch S on \emptyset that is valid for $V(G)$. Then, since S is valid, there is a colored drawing C of G described by S. The number of crossings of C is equal to the number of crossings in S and is at most k.

For the converse, suppose that G has a drawing with at most k crossings. Turn this drawing into a colored drawing C of G by making the ends of all crossing edges black and all other vertices white. We have at most $4 k$ black vertices and C respects \emptyset. Moreover, C is well-formed by the chain lemma (Lemma 8). Contracting C (with respect to boundary \emptyset), we obtain a small sketch on \emptyset that describes C and hence is valid for $V(G)$.

For the running time, we prove the following:

- Lemma 14. For each $t \in V(T)$, the number of small sketches on t, counting one from each X_{t}-isomorphism class, is $2^{O(k \log k)}$.

Proof. The number of non-isomorphic graphs with p vertices and q edges is upper bounded by $p^{2 q}$. For such a graph, the number of different colorings is at most 3^{p}, and the number of different drawings is at most $(p-1)$!. Observe that every small sketch of p vertices has $2 p+k-3$ edges. This follows from the fact that we can obtain an outerplanar drawing by removing at most k edges from an arbitrary small sketch. Since the color of the two vertices in $N_{\text {cycle }(S)}(v)$ for every white vertex v in an arbitrary sketch S is either black or gray, the number of white vertices is at most $4 k+O(\sqrt{k})$. Therefore, each small sketch has at most $8 k+O(\sqrt{k})$ vertices and at most $17 k+O(\sqrt{k})$ edges, and hence the number of such drawings is $2^{O(k \log k)}$.

References

1 M. J. Bannister and D. Eppstein. Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. In Proc. of GD 2014, pages 210-221. Springer, 2014.
2 M. Baur and U. Brandes. Crossing reduction in circular layouts. WG, 3353:332-343, 2004.

3 F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of Combinatorial Theory, Series B, 27(3):320-331, 1979.
4 G. Blin, G. Fertin, D. Hermelin, and S. Vialette. Fixed-parameter algorithms for protein similarity search under mRNA structure constraints. Journal of Discrete Algorithms, 6(4):618-626, 2008.
5 H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk. A $c^{k} n 5$-Approximation Algorithm for Treewidth. SIAM Journal on Computing, 45(2):317378, 2016.
6 G. Chartrand and F. Harary. Planar Permutation Graphs. Annales de l'I.H.P. Probabilités et statistiques, 3(4):433-438, 1967.
7 F. R. K. Chung, F. Thomson Leighton, and A. L. Rosenberg. Embedding graphs in books: a layout problem with applications to VLSI design. SIAM Journal on Algebraic Discrete Methods, 8(1):33-58, 1987.
8 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and computation, 85(1):12-75, 1990.
9 B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable graphs. Theoretical Computer Science, 109(1):49-82, 1993.
10 V. Dujmović, M. R. Fellows, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde, F. Rosamond, S. Whitesides, and D. R. Wood. On the parameterized complexity of layered graph drawing. Algorithmica, 52(2):267-292, 2008.
11 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited. Annals of Pure and Applied Logic, 130(1):3-31, 2004.
12 R. Fulek, H. He, O. Sỳkora, and I. Vrt'o. Outerplanar crossing numbers of 3-row meshes, Halin graphs and complete p-partite graphs. SOFSEM 2005: Theory and Practice of Computer Science, pages 376-379, 2005.
13 H. He, A. Sălăgean, and E. Mäkinen. One-and two-page crossing numbers for some types of graphs. International Journal of Computer Mathematics, 87(8):1667-1679, 2010.
14 J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipulation. Communications of the ACM, 16(6):372-378, 1973.
15 P. C. Kainen. The book thickness of a graph II. Congressus Numerantium, 71:121-132, 1990.

16 T. Kloks. Treewidth: computations and approximations, volume 842. Springer Science \& Business Media, 1994.
17 E. Mäkinen. On circular layouts. International Journal of Computer Mathematics, 24(1):2937, 1988.
18 S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-completeness of a computer network layout problem. In Proceedings of the 1987 IEEE International Symp. on Circuits and Systems, pages 292-295, 1987.
19 S. L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Information Processing Letters, 9(5):229-232, 1979.
20 F. Shahrokhi, O. Sỳkora, L. A. Székely, and I. Vrt'o. Book embeddings and crossing numbers. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 256-268. Springer, 1994.
21 J. M. Six and I. G. Tollis. Circular drawings of biconnected graphs. In ALENEX, volume 99, pages 57-73. Springer, 1999.
22 M. M. Sysło. Characterizations of outerplanar graphs. Discrete Mathematics, 26(1):47-53, 1979.

23 M. Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System Sciences, 38(1):36-67, 1989.

[^0]: ${ }^{1}$ http://www.graphviz.org/
 2 https://www.yworks.com/

