158 research outputs found

    Automatic Equivalence Structures of Polynomial Growth

    Get PDF
    In this paper we study the class EqP of automatic equivalence structures of the form ?=(D, E) where the domain D is a regular language of polynomial growth and E is an equivalence relation on D. Our goal is to investigate the following two foundational problems (in the theory of automatic structures) aimed for the class EqP. The first is to find algebraic characterizations of structures from EqP, and the second is to investigate the isomorphism problem for the class EqP. We provide full solutions to these two problems. First, we produce a characterization of structures from EqP through multivariate polynomials. Second, we present two contrasting results. On the one hand, we prove that the isomorphism problem for structures from the class EqP is undecidable. On the other hand, we prove that the isomorphism problem is decidable for structures from EqP with domains of quadratic growth

    Decidability of graph neural networks via logical characterizations

    Get PDF
    We present results concerning the expressiveness and decidability of a popular graph learning formalism, graph neural networks (GNNs), exploiting connections with logic. We use a family of recently-discovered decidable logics involving ``Presburger quantifiers''. We show how to use these logics to measure the expressiveness of classes of GNNs, in some cases getting exact correspondences between the expressiveness of logics and GNNs. We also employ the logics, and the techniques used to analyze them, to obtain decision procedures for verification problems over GNNs. We complement this with undecidability results for static analysis problems involving the logics, as well as for GNN verification problems

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, I⊆SI \subseteq S and S∩E=∅S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE

    Vector Addition System Reversible Reachability Problem

    Full text link
    The reachability problem for vector addition systems is a central problem of net theory. This problem is known to be decidable but the complexity is still unknown. Whereas the problem is EXPSPACE-hard, no elementary upper bounds complexity are known. In this paper we consider the reversible reachability problem. This problem consists to decide if two configurations are reachable one from each other, or equivalently if they are in the same strongly connected component of the reachability graph. We show that this problem is EXPSPACE-complete. As an application of the introduced materials we characterize the reversibility domains of a vector addition system

    Remarks on Recursion vs. Diagonalization

    Get PDF

    Bounded Reachability for Temporal Logic over Constraint Systems

    Full text link
    We present CLTLB(D), an extension of PLTLB (PLTL with both past and future operators) augmented with atomic formulae built over a constraint system D. Even for decidable constraint systems, satisfiability and Model Checking problem of such logic can be undecidable. We introduce suitable restrictions and assumptions that are shown to make the satisfiability problem for the extended logic decidable. Moreover for a large class of constraint systems we propose an encoding that realize an effective decision procedure for the Bounded Reachability problem

    A number theoretic characterization of EE-smooth and (FRS) morphisms: estimates on the number of Z/pkZ\mathbb{Z}/p^{k}\mathbb{Z}-points

    Full text link
    We provide uniform estimates on the number of Z/pkZ\mathbb{Z}/p^{k}\mathbb{Z}-points lying on fibers of flat morphisms between smooth varieties whose fibers have rational singularities, termed (FRS) morphisms. For each individual fiber, the estimates were known by work of Avni and Aizenbud, but we render them uniform over all fibers. The proof technique for individual fibers is based on Hironaka's resolution of singularities and Denef's formula, but breaks down in the uniform case. Instead, we use recent results from the theory of motivic integration. Our estimates are moreover equivalent to the (FRS) property, just like in the absolute case by Avni and Aizenbud. In addition, we define new classes of morphisms, called EE-smooth morphisms (E∈NE\in\mathbb{N}), which refine the (FRS) property, and use the methods we developed to provide uniform number-theoretic estimates as above for their fibers. Similar estimates are given for fibers of ε\varepsilon-jet flat morphisms, improving previous results by the last two authors.Comment: 27 pages, comments welcome; v2: the new notion of E-smooth morphisms was added, and uniform estimates on the number of points lying on the fibers of EE-smooth and ε\varepsilon-jet flat morphisms are given (Theorems 4.11 and 4.12
    • …
    corecore