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ABSTRACT 

Results are presented which show precise ways in 
which recursion rests on very simple computational 
bases which do not support diagonalization. A method 
based on recursion and making no use of diagonalization 
is given for proving lower bounds on computational 
complexity. Thus the intractability of computational 
problems such as Presburger arithmetic does not depend 
on diagonalization. 
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Introduction and Preliminaries 

We wish to help clarify the distinction between recursion 

(i.e. self-reference) and diagonalization. Recursion is 

sometimes regarded as a simpler and more "natural" computational 

tool. We shall show precise ways in which recursion rests on 

very simple "computational bases" which do not support 

diagonalization. We shall also sketch a general and somewhat 

simplified method for proving i.o. lower bounds on computational 

complexity. This method is based on recursion through the use 

of limited halting problems, and it makes no use of 

diagonalization. Thus we show that the intractability of certain 

computational problems (e.g. Presburger arithmetic) does not 

depend on diagonalization - which is used in all previous proofs 

- but rests instead on the very narrow and natural computational 

base for recursion. 

It is sometimes maintained, particularly in the realms of 

general computational complexity and recursive function theory, 
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that self-reference (i.e.. recursion) and diagonalization are 

very intimately related, if not identical. We hope to dispel any 

such illusions. Recursion often consists of a single, finite act 

of self-reference. It has a long history as a logical tool, with 

an early use generally attributed to Epimenedes [see Paul's 

"Epistle to Titus" 1,12]. Diagonalization involves an ongoing or 

completed infinitary process. It seems to have originated as a 

mathematical tool about a century ago in Cantor's celebrated 

proof of the uncountability of the continuum. 

In our current age of computational sophistication, 

recursion is a common feature basic to most high level 

programming languages. As a tool it has wide application 

throughout computer science (e.g. in the theory of program 

semantics). Diagonalization, although it is based on the common 

computational phenomenon of universal simulation (i.e. 

interpreters), seems to have its applications restricted 

primarily to general complexity theory and recursive function 

theory (and is regarded by some as being somewhat "contrived"). 

These are some intuitions and part of a cultural backdrop against 

which we wish to present our results. 

Diagonalization constructions use a universal function (i.e. 

interpreter) for a programming system - that is, a program u 

such that (i ,x) (x) for all programs i and inputs x - or some 

closely allied form of universal simulation. Moreover, in 

complexity theory diagonalizations often require that simulation 

have a small overhead. That is, they require that $ (i,x) be not 
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much greater than §. (x) . The intuition that diagonalization and 

universal simulation are very closely related is substantiated by 

work of Kozen [4], Machtey, Meyer, and others (as yet 

unpublished). However, we shall not consider such results here. 

We are interested instead in the power of recursion, and in the 

small, natural bases which support it without necessarily 

supporting universal simulation. 

Very general forms of recursion can be justified in 

programming systems by appealing to the Recursion Theorem. We 

shall consider a version of the Recursion Theorem as originally 

formulated by Kleene [3] : 

for every program i there is a program n (which can be 

found effectively from i) such that jzt̂ (x) =jzL (n,x) for 

all inputs x. 

This version seems computationally more natural and "simpler" 

than the fixed point version stated in Rogers [8] : 

for every total recursive function f there is a program 

n such that f& _, . . n £ (n) 

Kleene1 s version is sufficient to justify recursive features used 

in programming languages, and it is the version actually used in 

nearly all applications in complexity theory and recursive 

function theory. In acceptable (i.e. general) programming 

systems - those satisfying the Enumeration and s-m-n Theorems 

these two forms of the Recursion Theorem are easily shown to be 

equivalent. In what follows we shall show a precise sense in the 
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realm of computational complexity in which the fixed point 

version is properly stronger than Kleene's. 

With most of the definitions and results we shall present 

there are a variety of precise formulations which are either 

equivalent or at least all sufficient for the purposes at hand. 

We shall not indicate here the full extent of this latitude, but 

restrict ourselves instead to single versions selected to be as 

simple as possible. 

Recursion vs. Diagonalization 

One small and natural base sufficient for a programming 

system to support recursion is that the system be able to handle 

prefixing (of strings) and simple subroutining, and in addition 

that the system be able to perform such simple program 

manipulations on itself. Specifically, 

Proposition: Let . . . be a programming system 

containing programs pre and sub such that for all 

inputs x and y and all programs i and j, 

<*pre(x) (y> = (*'y> a n d *sub(i#j) (X'y)=*iO*j<x)'y)- T h e n 

for every program i there is a program n (which can be 

found easily from i) such that (x) =fi. (n ,x) for all 

inputs x. 

The proof first produces an s-1-1 function similarly to 

Machtey, Winklmann, and Young [6] and then proceeds with what is 

essentially Kleene's proof of the Recursion Theorem. It should 
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be noted that although the hypothesis holds in all acceptable 

programming systems, the proof does not require the programming 

system to be acceptable. That is, it makes no use of a universal 

function. Thus the proposition holds for an extremely wide range 

of programming systems, including subrecursive systems which do 

not have universal functions as well as nondeterministic systems. 

Also, it is extremely easy to verify the hypothesis of the 

proposition directly for almost any reasonable programming 

system. 

We are interested not just in the base which supports 

recursion, but also in the base sufficient to have a low overhead 

for recursion as well. That is, we want $n(x) to be not much 

greater than (n,x). One way to accomplish this is to require 

the overhead for prefixing and subroutining to be low. 

Specifically, 

Definition: Let be an acceptable 

programming system and $ a Blum complexity measure on 

it. The measure is called linearly bounded if there 

are programs pre and sub as in the proposition above 

and a (positive integer) constant k such that for all 

x, y, i, and j, 

( a ) $pre(x) ( y ) - k l ( x , y ) 1 ' a n d 

( b ) $sub(i,j) ( X' Y ) ^ k [ $ j ( x ) + W X ) , Y ) ] ' 

In any reasonable programming system with any reasonable 

complexity measure and definition of the functions pre and sub, 
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verification of conditions (a) and (b) is quite simple. 

Moreover, without malice aforethought it is extremely unlikely 

that someone would produce a complexity measure which is not at 

least "almost" linearly bounded (see the last paragraph of the 

previous section). By adding some fairly straightforward 

calculations to the proof of the previous proposition, we prove 

the following: 

Theorem: If $ is a linearly bounded complexity 

measure, then for every program i there is a program n 

(which can be found easily from i) such that for all 

inputs x, 

(a) (x) = f6i (n,x) , and 

(b) $n(x) < k2[$i(n,x) + lx|] + k' , 

where k is from the definition above and k' is some 

other constant. 

Note that as with the Recursion Theorem (i.e. the 

Proposition) above, the proof of this Theorem does not require 

the programming system to be acceptable. In addition, the proof 

does not require the measure to be a Blum measure. Specifically, 

the proof never uses the fact that $. (x) <y is a decidable 

predicate of i, x, and y. Thus the conclusions hold in a wide 

variety of programming systems and "measures", including 

subrecursive and nondeterministic systems. (A somewhat different 

complexity theoretic subrecursive Recursion Theorem has been 

proved independently by Alton [1]). 
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The previous Theorem shows that linearly bounded complexity 

measures provide a small, natural base for performing recursion 

with low overhead. This base is not sufficient for 

diagonalization in the precise sense that linearly bounded 

complexity measures may require more than linear overhead for 

universal simulation (if they are capable of universal simulation 

at all). There are natural linearly bounded measures for which 

this overhead seems to be at least quadratic. However, here we 

shall content ourselves with "unnatural" linearly bounded 

measures with arbitrarily large overhead for universal simulation 

(as well as for the fixed point form of the Recursion Theorem). 

Proposition: For any total recursive function t there 

is a linearly bounded complexity measure $ such that 

(a) if u is any universal program then there are 

infinitely many programs i such that $ ( i f x ) > t ( x ) f x ) 

a.e. x, and 

(b) there are total recursive functions f such that 

for any program n with jzf =jzf-. ,, $„(x)>t(§ (x) ,x) n t(n) n £ (n) 
for all x. 

The proof is by "measure manipulation", and we are indebted 

to Paul Chew for his assistance with it. Similar techniques also 

settle closely related questions concerning the complexity of 

simulation in linearly bounded measures. For example, the 

complexity of the predicate $.(x)^y can be made either very small 

or very large, independently of the complexity of universal 

functions. 
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We close this section with a brief comment that linearly 

bounded measures are an important example of what we call 

"structured" complexity measures. That is, they are measures 

which are required to reflect program structure to at least some 
m 

minimal extent. One goal of studying structured measures is to 

find small, natural restrictions can be placed on measures to 

guarantee that they exhibit various important complexity 

theoretic properties which occur in "natural" measures. Another 

example of structured measures is used in Machtey [5] to give 

general characterizations of complexity sequences which apply to 

subrecursive and nondeterministic programming systems as well as 

to acceptable systems. A speedup theorem for subrecursive 

systems follows as a special case. (Alton [1] has independently 

proved a somewhat different and weaker speedup theorem for 

subrecursive systems.) 

Limited Halting Problems 

It is well known that while in every Blum complexity measure 

there are arbitrarily complex recursive functions, no given total 

recursive function can be complex in every Blum measure. 

Measures are easily constructed in which the given function has 

zero complexity. Thus some restrictions must be placed on 

measures in order to establish lower bounds on the complexity of 

specific computational problems. This section and the next will 

sketch a method for using the results of the previous section to 

accomplish this goal. 
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The halting problem is the basic unsolvable computational 

probl em r and at 1east intuitively, "limited" halting problems 

should be basic intrinsically difficult computational problems. 

Specifically, for any complexity measure $ and total recursive 

function f we define the f-limited halting problem by 

Halt* = { (i,x) 1 (x) < f(|xl) }. 

Intuitively, Halt| should have complexity (at least) about f 

(i.o.). In fact, by combining the usual proof of the 

unsolvability of the halting problem (which uses a very simple 

self-referencing) with standard methods from general complexity 

theory we obtain the following: 

Proposition: For every Blum measure $ there is some 

total recursive function h such that for every total 

recursive function f and any program d which decides 

membership in Halt| there are infinitely many programs 

i such that h($^(i,x)rx) >_ f(|x|) i.o. x. 

Since Halt| is defined in terms of the measure we might 

hope for more; however, 

Proposition: For any Blum measure $ and any total 

recursive function f there is a "slightly altered" 

measure ^ such that Halt| has zero complexity; the same 

holds with f replaced by any r.e. sequence fQ,f1,... of 

total recursive functions. 
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Thus for specific functions f there is no nontrivial lower 

bound on the complexity of the f-limited halting problem which 

can be established for arbitrary measures. However, for linearly 

bounded complexity measures, f-limited halting problems must be 

at least about f-hard. 

Theorem: If $ is a linearly bounded complexity 

measure and f is a total recursive function, then Halt| 

must be at least f-hard in the following sense: if d is 

any program which decides membership in Halt|, then 

there is a program n (depending effectively on d) such 

that for all x 

(a) (n,x) is not in Halt| , and 

(b) $d(n,x) > f(|x|)/k3 - |x[/k2 - k" 

where k is from the definition of linearly bounded 

measures and k" is another constant. 

The proof uses the complexity theoretic Recursion Theorem 

above to show that if the conclusion did not hold then a self-

referencing program could be constructed which says, "If I am 

going to be cheap to run, then I shall not halt at all." Again, 

the proof does not require the programming system to be 

acceptable or the predicate $.(x)£y to be decidable. Thus the 

conclusion holds for subrecursive and nondeterministic 

programming systems. In fact, the proof is actually somewhat 

simpler and more natural in the context of "partial" decision 

procedures, and nondeterministic decision procedures can quite 

easily be viewed as partial decision procedures. 
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Lower Bounds on Computational Complexity 

The previous Theorem supplies appropriate i.o. lower bounds 

on limited halting problems for linearly bounded complexity 

measures, which include all "reasonable" complexity measures. 

Our constructions of linearly bounded measures in which 

simulation must be very costly which were mentioned earlier show 

that no appropriately tight upper bounds exist for limited 

halting problems in all linearly bounded complexity measures. 

Some additional restrictions on the measures are required. It is 

interesting to contrast this situation with those compression and 

hierarchy results in which upper bounds are relatively easy to 

verify while lower bounds are more difficult to obtain. In 

addition, we point out that these methods provide simple, direct, 

and diagonalizationless proofs of hierarchy theorems for such 

systems as nondeterministic Turing machines. 

A common feature in the proofs of intractability of specific 

computational problems originated by Meyer and his colleagues is 

an "efficient translation" of some programming system - usually 

Turing machines - into the problem in question. This translation 

can be formalized as a complexity restricted (Many-one) reduction 

of one set to another. 

Defini tion: For any complexity measure total 

recursive function f, and sets S and T, we write 

S 6 M S f f[T] 

if there is a total recursive function r computed by a 

program R such that for all programs i and inputs x, 
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(a) (i ,x) G S if and only if r(i,x) G T , 

(b) Vi 3 C ( I r (i rx) I £ c | x | a.e. x ) , and 

(c) Vc_> 1 ( $R(i,x) _< f ( | r (i ,x) |)/c a.e. x ). 

All existing proofs of intractability include, in some form, a 

demonstration that Halt? G f[T] for some f, and T. r $, t 

We now have the machinery for our general and somewhat 

simplified method for proving intractability. First, it is 

convenient to put some slight restrictions on the functions f. 

We say that a function f is more than linear if for all y and c 

f(y)£f(y+l)/ c*f (y)<f (c*y) , and c*y<f(y) a.e. y. 

The previous Theorem together with some additional calculations 

yield the following: 

Theorem: Let $ be a linearly bounded complexity 

measure, f be a total recursive function which is more 

than linear, and T be a set such that Halt| G M^ f[Tl-

If d is any program which decides membership in T then 

there is a constant K which depends effectively on d 

such that f(|z|/K)<§d(z) for infinitely many z $ T. 

The generality of the method provided by this Theorem lies 

in the wide variety of programming systems and complexity 

measures which can be employed. As we shall indicate below, one 

is free to choose a system and measure which most naturally 

reduces to a specific set T in question. In some cases the most 
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convenient measure, while easily seen to be linearly bounded and 

reasonably (e.g. polynomially) related to more standard measures, 

might be somewhat "unnatural" and not have sufficiently small 

overhead for simulation to allow intractability proofs based on 

diagonalization using that measure. 

Since our method uses no universal simulation, it is now 

clear that such intractability results - including all of those 

in Stockmeyer [9], for example - do not depend in any way on 

diagonalization. 

This method is somewhat simpler in that it makes no use of 

notions of honesty or of compression-hierarchy results, which are 

used in other methods (and involve diagonalization). Such a 

presentation appears in Machtey and Young [7]. 

One of the applications of our method which appears in 

Machtey and Young [7] is the result of Fischer and Rabin [2] for 

Presburger arithmetic. This application provides an extremely 

nice example of choosing a convenient programming system and 

complexity measure which are not entirely "natural" but which 

nevertheless work. Moreover, that presentation makes it 

absolutely clear to what extent the clever Fischer-Rabin 

construction of short predicates for limited multiplication is 

the key to proving their result. 

We conclude with two final remarks. Various strengthened 

statements of intractability, such as on the density of "hard" 

inputs, can be derived in our method with the same amount of 
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additional work. Also, although no such application has yet been 

found for natural, interesting problems, our method is at least 

as likely as others to yield proofs of subexponential (e.g. 

polynomial) lower bounds. In fact, since our method does not use 

diagonalization, it may hold out hope of providing such proofs 

when other methods cannot. 
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