
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1978

Remarks on Recursion vs. Diagonalization Remarks on Recursion vs. Diagonalization

Michael Machtey

Report Number:
79-311

Machtey, Michael, "Remarks on Recursion vs. Diagonalization" (1978). Department of Computer Science
Technical Reports. Paper 240.
https://docs.lib.purdue.edu/cstech/240

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4951428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Remarks on Recursion vs. Diagonalization

Michael Machtey

Purdue University
Department of Computer Sciences
West Lafayette, Indiana 47907

November, 1977
(retyped July, 1979)

CSD TR 311

ABSTRACT

Results are presented which show precise ways in
which recursion rests on very simple computational
bases which do not support diagonalization. A method
based on recursion and making no use of diagonalization
is given for proving lower bounds on computational
complexity. Thus the intractability of computational
problems such as Presburger arithmetic does not depend
on diagonalization.

This research was supported in part by the
National Science Foundation under Grant MCS-76-09212.

This note is a preliminary report of continuing
research. Its purpose is limited dissemination to
interested experts, and it should be regarded and
treated accordingly.

Remarks on Recursion vs. Diagonalization

Michael Machtey

Purdue University
Department of Computer Sciences
West Lafayette, Indiana 47907

November, 1977
(retyped July, 1979)

CSD TR 311

Introduction and Preliminaries

We wish to help clarify the distinction between recursion

(i.e. self-reference) and diagonalization. Recursion is

sometimes regarded as a simpler and more "natural" computational

tool. We shall show precise ways in which recursion rests on

very simple "computational bases" which do not support

diagonalization. We shall also sketch a general and somewhat

simplified method for proving i.o. lower bounds on computational

complexity. This method is based on recursion through the use

of limited halting problems, and it makes no use of

diagonalization. Thus we show that the intractability of certain

computational problems (e.g. Presburger arithmetic) does not

depend on diagonalization - which is used in all previous proofs

- but rests instead on the very narrow and natural computational

base for recursion.

It is sometimes maintained, particularly in the realms of

general computational complexity and recursive function theory,

- 2 -

that self-reference (i.e.. recursion) and diagonalization are

very intimately related, if not identical. We hope to dispel any

such illusions. Recursion often consists of a single, finite act

of self-reference. It has a long history as a logical tool, with

an early use generally attributed to Epimenedes [see Paul's

"Epistle to Titus" 1,12]. Diagonalization involves an ongoing or

completed infinitary process. It seems to have originated as a

mathematical tool about a century ago in Cantor's celebrated

proof of the uncountability of the continuum.

In our current age of computational sophistication,

recursion is a common feature basic to most high level

programming languages. As a tool it has wide application

throughout computer science (e.g. in the theory of program

semantics). Diagonalization, although it is based on the common

computational phenomenon of universal simulation (i.e.

interpreters), seems to have its applications restricted

primarily to general complexity theory and recursive function

theory (and is regarded by some as being somewhat "contrived").

These are some intuitions and part of a cultural backdrop against

which we wish to present our results.

Diagonalization constructions use a universal function (i.e.

interpreter) for a programming system - that is, a program u

such that (i ,x) (x) for all programs i and inputs x - or some

closely allied form of universal simulation. Moreover, in

complexity theory diagonalizations often require that simulation

have a small overhead. That is, they require that $ (i,x) be not

- 3 -

much greater than §. (x) . The intuition that diagonalization and

universal simulation are very closely related is substantiated by

work of Kozen [4], Machtey, Meyer, and others (as yet

unpublished). However, we shall not consider such results here.

We are interested instead in the power of recursion, and in the

small, natural bases which support it without necessarily

supporting universal simulation.

Very general forms of recursion can be justified in

programming systems by appealing to the Recursion Theorem. We

shall consider a version of the Recursion Theorem as originally

formulated by Kleene [3] :

for every program i there is a program n (which can be

found effectively from i) such that jzt̂ (x) =jzL (n,x) for

all inputs x.

This version seems computationally more natural and "simpler"

than the fixed point version stated in Rogers [8] :

for every total recursive function f there is a program

n such that f& _, . . n £ (n)

Kleene1 s version is sufficient to justify recursive features used

in programming languages, and it is the version actually used in

nearly all applications in complexity theory and recursive

function theory. In acceptable (i.e. general) programming

systems - those satisfying the Enumeration and s-m-n Theorems

these two forms of the Recursion Theorem are easily shown to be

equivalent. In what follows we shall show a precise sense in the

- 4 -

realm of computational complexity in which the fixed point

version is properly stronger than Kleene's.

With most of the definitions and results we shall present

there are a variety of precise formulations which are either

equivalent or at least all sufficient for the purposes at hand.

We shall not indicate here the full extent of this latitude, but

restrict ourselves instead to single versions selected to be as

simple as possible.

Recursion vs. Diagonalization

One small and natural base sufficient for a programming

system to support recursion is that the system be able to handle

prefixing (of strings) and simple subroutining, and in addition

that the system be able to perform such simple program

manipulations on itself. Specifically,

Proposition: Let . . . be a programming system

containing programs pre and sub such that for all

inputs x and y and all programs i and j,

<*pre(x) (y> = (*'y> a n d *sub(i#j) (X'y)=*iO*j<x)'y)- T h e n

for every program i there is a program n (which can be

found easily from i) such that (x) =fi. (n ,x) for all

inputs x.

The proof first produces an s-1-1 function similarly to

Machtey, Winklmann, and Young [6] and then proceeds with what is

essentially Kleene's proof of the Recursion Theorem. It should

_ 5 -

be noted that although the hypothesis holds in all acceptable

programming systems, the proof does not require the programming

system to be acceptable. That is, it makes no use of a universal

function. Thus the proposition holds for an extremely wide range

of programming systems, including subrecursive systems which do

not have universal functions as well as nondeterministic systems.

Also, it is extremely easy to verify the hypothesis of the

proposition directly for almost any reasonable programming

system.

We are interested not just in the base which supports

recursion, but also in the base sufficient to have a low overhead

for recursion as well. That is, we want $n(x) to be not much

greater than (n,x). One way to accomplish this is to require

the overhead for prefixing and subroutining to be low.

Specifically,

Definition: Let be an acceptable

programming system and $ a Blum complexity measure on

it. The measure is called linearly bounded if there

are programs pre and sub as in the proposition above

and a (positive integer) constant k such that for all

x, y, i, and j,

(a) $pre(x) (y) - k l (x , y) 1 ' a n d

(b) $sub(i,j) (X' Y) ^ k [$ j (x) + W X) , Y)] '

In any reasonable programming system with any reasonable

complexity measure and definition of the functions pre and sub,

- 6 -

verification of conditions (a) and (b) is quite simple.

Moreover, without malice aforethought it is extremely unlikely

that someone would produce a complexity measure which is not at

least "almost" linearly bounded (see the last paragraph of the

previous section). By adding some fairly straightforward

calculations to the proof of the previous proposition, we prove

the following:

Theorem: If $ is a linearly bounded complexity

measure, then for every program i there is a program n

(which can be found easily from i) such that for all

inputs x,

(a) (x) = f6i (n,x) , and

(b) $n(x) < k2[$i(n,x) + lx|] + k' ,

where k is from the definition above and k' is some

other constant.

Note that as with the Recursion Theorem (i.e. the

Proposition) above, the proof of this Theorem does not require

the programming system to be acceptable. In addition, the proof

does not require the measure to be a Blum measure. Specifically,

the proof never uses the fact that $. (x) <y is a decidable

predicate of i, x, and y. Thus the conclusions hold in a wide

variety of programming systems and "measures", including

subrecursive and nondeterministic systems. (A somewhat different

complexity theoretic subrecursive Recursion Theorem has been

proved independently by Alton [1]).

- 7 -

The previous Theorem shows that linearly bounded complexity

measures provide a small, natural base for performing recursion

with low overhead. This base is not sufficient for

diagonalization in the precise sense that linearly bounded

complexity measures may require more than linear overhead for

universal simulation (if they are capable of universal simulation

at all). There are natural linearly bounded measures for which

this overhead seems to be at least quadratic. However, here we

shall content ourselves with "unnatural" linearly bounded

measures with arbitrarily large overhead for universal simulation

(as well as for the fixed point form of the Recursion Theorem).

Proposition: For any total recursive function t there

is a linearly bounded complexity measure $ such that

(a) if u is any universal program then there are

infinitely many programs i such that $ (i f x) > t (x) f x)

a.e. x, and

(b) there are total recursive functions f such that

for any program n with jzf =jzf-. ,, $„(x)>t(§ (x) ,x) n t(n) n £ (n)
for all x.

The proof is by "measure manipulation", and we are indebted

to Paul Chew for his assistance with it. Similar techniques also

settle closely related questions concerning the complexity of

simulation in linearly bounded measures. For example, the

complexity of the predicate $.(x)^y can be made either very small

or very large, independently of the complexity of universal

functions.

- 8 -

We close this section with a brief comment that linearly

bounded measures are an important example of what we call

"structured" complexity measures. That is, they are measures

which are required to reflect program structure to at least some
m

minimal extent. One goal of studying structured measures is to

find small, natural restrictions can be placed on measures to

guarantee that they exhibit various important complexity

theoretic properties which occur in "natural" measures. Another

example of structured measures is used in Machtey [5] to give

general characterizations of complexity sequences which apply to

subrecursive and nondeterministic programming systems as well as

to acceptable systems. A speedup theorem for subrecursive

systems follows as a special case. (Alton [1] has independently

proved a somewhat different and weaker speedup theorem for

subrecursive systems.)

Limited Halting Problems

It is well known that while in every Blum complexity measure

there are arbitrarily complex recursive functions, no given total

recursive function can be complex in every Blum measure.

Measures are easily constructed in which the given function has

zero complexity. Thus some restrictions must be placed on

measures in order to establish lower bounds on the complexity of

specific computational problems. This section and the next will

sketch a method for using the results of the previous section to

accomplish this goal.

- 9 -

The halting problem is the basic unsolvable computational

probl em r and at 1east intuitively, "limited" halting problems

should be basic intrinsically difficult computational problems.

Specifically, for any complexity measure $ and total recursive

function f we define the f-limited halting problem by

Halt* = { (i,x) 1 (x) < f(|xl) }.

Intuitively, Halt| should have complexity (at least) about f

(i.o.). In fact, by combining the usual proof of the

unsolvability of the halting problem (which uses a very simple

self-referencing) with standard methods from general complexity

theory we obtain the following:

Proposition: For every Blum measure $ there is some

total recursive function h such that for every total

recursive function f and any program d which decides

membership in Halt| there are infinitely many programs

i such that h($^(i,x)rx) >_ f(|x|) i.o. x.

Since Halt| is defined in terms of the measure we might

hope for more; however,

Proposition: For any Blum measure $ and any total

recursive function f there is a "slightly altered"

measure ^ such that Halt| has zero complexity; the same

holds with f replaced by any r.e. sequence fQ,f1,... of

total recursive functions.

- 10 -

Thus for specific functions f there is no nontrivial lower

bound on the complexity of the f-limited halting problem which

can be established for arbitrary measures. However, for linearly

bounded complexity measures, f-limited halting problems must be

at least about f-hard.

Theorem: If $ is a linearly bounded complexity

measure and f is a total recursive function, then Halt|

must be at least f-hard in the following sense: if d is

any program which decides membership in Halt|, then

there is a program n (depending effectively on d) such

that for all x

(a) (n,x) is not in Halt| , and

(b) $d(n,x) > f(|x|)/k3 - |x[/k2 - k"

where k is from the definition of linearly bounded

measures and k" is another constant.

The proof uses the complexity theoretic Recursion Theorem

above to show that if the conclusion did not hold then a self-

referencing program could be constructed which says, "If I am

going to be cheap to run, then I shall not halt at all." Again,

the proof does not require the programming system to be

acceptable or the predicate $.(x)£y to be decidable. Thus the

conclusion holds for subrecursive and nondeterministic

programming systems. In fact, the proof is actually somewhat

simpler and more natural in the context of "partial" decision

procedures, and nondeterministic decision procedures can quite

easily be viewed as partial decision procedures.

- 11 -

Lower Bounds on Computational Complexity

The previous Theorem supplies appropriate i.o. lower bounds

on limited halting problems for linearly bounded complexity

measures, which include all "reasonable" complexity measures.

Our constructions of linearly bounded measures in which

simulation must be very costly which were mentioned earlier show

that no appropriately tight upper bounds exist for limited

halting problems in all linearly bounded complexity measures.

Some additional restrictions on the measures are required. It is

interesting to contrast this situation with those compression and

hierarchy results in which upper bounds are relatively easy to

verify while lower bounds are more difficult to obtain. In

addition, we point out that these methods provide simple, direct,

and diagonalizationless proofs of hierarchy theorems for such

systems as nondeterministic Turing machines.

A common feature in the proofs of intractability of specific

computational problems originated by Meyer and his colleagues is

an "efficient translation" of some programming system - usually

Turing machines - into the problem in question. This translation

can be formalized as a complexity restricted (Many-one) reduction

of one set to another.

Defini tion: For any complexity measure total

recursive function f, and sets S and T, we write

S 6 M S f f[T]

if there is a total recursive function r computed by a

program R such that for all programs i and inputs x,

- 12 -

(a) (i ,x) G S if and only if r(i,x) G T ,

(b) Vi 3 C (I r (i rx) I £ c | x | a.e. x) , and

(c) Vc_> 1 ($R(i,x) _< f (| r (i ,x) |)/c a.e. x).

All existing proofs of intractability include, in some form, a

demonstration that Halt? G f[T] for some f, and T. r $, t

We now have the machinery for our general and somewhat

simplified method for proving intractability. First, it is

convenient to put some slight restrictions on the functions f.

We say that a function f is more than linear if for all y and c

f(y)£f(y+l)/ c*f (y)<f (c*y) , and c*y<f(y) a.e. y.

The previous Theorem together with some additional calculations

yield the following:

Theorem: Let $ be a linearly bounded complexity

measure, f be a total recursive function which is more

than linear, and T be a set such that Halt| G M^ f[Tl-

If d is any program which decides membership in T then

there is a constant K which depends effectively on d

such that f(|z|/K)<§d(z) for infinitely many z $ T.

The generality of the method provided by this Theorem lies

in the wide variety of programming systems and complexity

measures which can be employed. As we shall indicate below, one

is free to choose a system and measure which most naturally

reduces to a specific set T in question. In some cases the most

- 13 -

convenient measure, while easily seen to be linearly bounded and

reasonably (e.g. polynomially) related to more standard measures,

might be somewhat "unnatural" and not have sufficiently small

overhead for simulation to allow intractability proofs based on

diagonalization using that measure.

Since our method uses no universal simulation, it is now

clear that such intractability results - including all of those

in Stockmeyer [9], for example - do not depend in any way on

diagonalization.

This method is somewhat simpler in that it makes no use of

notions of honesty or of compression-hierarchy results, which are

used in other methods (and involve diagonalization). Such a

presentation appears in Machtey and Young [7].

One of the applications of our method which appears in

Machtey and Young [7] is the result of Fischer and Rabin [2] for

Presburger arithmetic. This application provides an extremely

nice example of choosing a convenient programming system and

complexity measure which are not entirely "natural" but which

nevertheless work. Moreover, that presentation makes it

absolutely clear to what extent the clever Fischer-Rabin

construction of short predicates for limited multiplication is

the key to proving their result.

We conclude with two final remarks. Various strengthened

statements of intractability, such as on the density of "hard"

inputs, can be derived in our method with the same amount of

- 14 -

additional work. Also, although no such application has yet been

found for natural, interesting problems, our method is at least

as likely as others to yield proofs of subexponential (e.g.

polynomial) lower bounds. In fact, since our method does not use

diagonalization, it may hold out hope of providing such proofs

when other methods cannot.

References

[1] D.A. Alton, "Natural" complexity measures and a subrecursive
speed-up theorem, Proc. IFIP '77.

[2] M. Fischer and M. Rabin, Super-exponential difficulty of
Presburger arithmetic, SIAM-AMS Proc. VII (1974).

[3] S.C. Kleene, Introduction to Metamathematics Van Nostram,
Princeton, 1952.

[4] D. Kozen, Indexings of Subrecursive Classes, TCS (to
appear).

[5] M. Machtey, Characterizations of complexity sequences in a
general context, (in preparation).

[6] Machtey, Winklmann, and Young, Simple Gfldel numberings,
isomorphisms, and programming properties, SIAM J. Comp. 7
(1978).

[7] Machtey and Young, An Introduction to the General Theory of
Algorithms, North Holland, New York, 1978.

[8] H. Rogers, Theory of Recursive Functions and Effective
Computability, McGraw-Hill, 1967.

[9] L. Stockmeyer, The complexity of decision problems in
automata theory and logic, M.I.T. Project MAC Tech. Report
TR-133 (1974).

	Remarks on Recursion vs. Diagonalization
	Report Number:
	

	tmp.1307986960.pdf.NpcKc

