418 research outputs found

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape

    Toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

    Get PDF
    Convergence between high-performance computing (HPC) and big data analytics (BDA) is currently an established research area that has spawned new opportunities for unifying the platform layer and data abstractions in these ecosystems. This work presents an architectural model that enables the interoperability of established BDA and HPC execution models, reflecting the key design features that interest both the HPC and BDA communities, and including an abstract data collection and operational model that generates a unified interface for hybrid applications. This architecture can be implemented in different ways depending on the process- and data-centric platforms of choice and the mechanisms put in place to effectively meet the requirements of the architecture. The Spark-DIY platform is introduced in the paper as a prototype implementation of the architecture proposed. It preserves the interfaces and execution environment of the popular BDA platform Apache Spark, making it compatible with any Spark-based application and tool, while providing efficient communication and kernel execution via DIY, a powerful communication pattern library built on top of MPI. Later, Spark-DIY is analyzed in terms of performance by building a representative use case from the hydrogeology domain, EnKF-HGS. This application is a clear example of how current HPC simulations are evolving toward hybrid HPC-BDA applications, integrating HPC simulations within a BDA environment.This work was supported in part by the Spanish Ministry of Economy, Industry and Competitiveness under Grant TIN2016-79637-P(toward Unification of HPC and Big Data Paradigms), in part by the Spanish Ministry of Education under Grant FPU15/00422 TrainingProgram for Academic and Teaching Staff Grant, in part by the Advanced Scientific Computing Research, Office of Science, U.S.Department of Energy, under Contract DE-AC02-06CH11357, and in part by the DOE with under Agreement DE-DC000122495,Program Manager Laura Biven

    Performance Evaluation of Data-Intensive Computing Applications on a Public IaaS Cloud

    Get PDF
    [Abstract] The advent of cloud computing technologies, which dynamically provide on-demand access to computational resources over the Internet, is offering new possibilities to many scientists and researchers. Nowadays, Infrastructure as a Service (IaaS) cloud providers can offset the increasing processing requirements of data-intensive computing applications, becoming an emerging alternative to traditional servers and clusters. In this paper, a comprehensive study of the leading public IaaS cloud platform, Amazon EC2, has been conducted in order to assess its suitability for data-intensive computing. One of the key contributions of this work is the analysis of the storage-optimized family of EC2 instances. Furthermore, this study presents a detailed analysis of both performance and cost metrics. More specifically, multiple experiments have been carried out to analyze the full I/O software stack, ranging from the low-level storage devices and cluster file systems up to real-world applications using representative data-intensive parallel codes and MapReduce-based workloads. The analysis of the experimental results has shown that data-intensive applications can benefit from tailored EC2-based virtual clusters, enabling users to obtain the highest performance and cost-effectiveness in the cloud.Ministerio de Economía y Competitividad; TIN2013-42148-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/055Ministerio de Educación y Ciencia; AP2010-434

    Analysis and evaluation of MapReduce solutions on an HPC cluster

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computers & Electrical Engineering. The final authenticated version is available online at: https://doi.org/10.1016/j.compeleceng.2015.11.021[Abstract] The ever growing needs of Big Data applications are demanding challenging capabilities which cannot be handled easily by traditional systems, and thus more and more organizations are adopting High Performance Computing (HPC) to improve scalability and efficiency. Moreover, Big Data frameworks like Hadoop need to be adapted to leverage the available resources in HPC environments. This situation has caused the emergence of several HPC-oriented MapReduce frameworks, which benefit from different technologies traditionally oriented to supercomputing, such as high-performance interconnects or the message-passing interface. This work aims to establish a taxonomy of these frameworks together with a thorough evaluation, which has been carried out in terms of performance and energy efficiency metrics. Furthermore, the adaptability to emerging disks technologies, such as solid state drives, has been assessed. The results have shown that new frameworks like DataMPI can outperform Hadoop, although using IP over InfiniBand also provides significant benefits without code modifications.Ministerio de Economía y Competitividad; TIN2013-42148-

    BDEv 3.0: energy efficiency and microarchitectural characterization of Big Data processing frameworks

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Future Generation Computer Systems. The final authenticated version is available online at: https://doi.org/10.1016/j.future.2018.04.030[Abstract] As the size of Big Data workloads keeps increasing, the evaluation of distributed frameworks becomes a crucial task in order to identify potential performance bottlenecks that may delay the processing of large datasets. While most of the existing works generally focus only on execution time and resource utilization, analyzing other important metrics is key to fully understanding the behavior of these frameworks. For example, microarchitecture-level events can bring meaningful insights to characterize the interaction between frameworks and hardware. Moreover, energy consumption is also gaining increasing attention as systems scale to thousands of cores. This work discusses the current state of the art in evaluating distributed processing frameworks, while extending our Big Data Evaluator tool (BDEv) to extract energy efficiency and microarchitecture-level metrics from the execution of representative Big Data workloads. An experimental evaluation using BDEv demonstrates its usefulness to bring meaningful information from popular frameworks such as Hadoop, Spark and Flink.Ministerio de Economía, Industria y Competitividad; TIN2016-75845-PMinisterio de Educación; FPU14/02805Ministerio de Educación; FPU15/0338
    corecore