851 research outputs found

    Integrated Passives for High-Frequency Applications

    Get PDF

    Recent Trends and Considerations for High Speed Data in Chips and System Interconnects

    Get PDF
    This paper discusses key issues related to the design of large processing volume chip architectures and high speed system interconnects. Design methodologies and techniques are discussed, where recent trends and considerations are highlighted

    Modal based BGA modeling in high-speed package

    Get PDF
    In the Section 1, the improved Root-Omega method for extracting dielectric properties from fabricated multilayer printed circuit boards is proposed. Based on the electrical properties of fabricated transmission lines, the improved Root-Omega method applied to cases with smooth and rough conductors is validated using simulations. Error sensitivity analysis is performed to demonstrate the potential errors in the original Root-Omega procedure and the error sensitivity is significantly reduced by the proposed improvements. In the Section 2, a fast modal-based approach is developed to accurately and efficiently capture the proximity effect. Image theory is also applied in the proposed approach to reduce the computational domain from 3D structure to 2D. The matrix reduction approach is applied to obtain the physical loop inductance. The lumped capacitance is obtained. A π topology equivalent circuit model for the BGA structure is built. Good agreement between the equivalent circuit model and full wave simulation can be achieved up to 40GHz. In the Section 3, the proximity effect for BGAs between parallel plates is carefully considered. A modal-based cavity method is proposed to extract the partial inductance of two parallel plates. The modal basis function is used to count for the non-uniformly distributed current density. The physical loop inductance is further obtained from the matrix reduction approach. The extracted physical loop inductance is validated with a commercial finite element method-based tool. The boundary effect is demonstrated in the inductance extraction. The proposed method is used to optimize for the power distributed network design --Abstract, page iii

    Additively Manufactured RF Components, Packaging, Modules, and Flexible Modular Phased Arrays Enabling Widespread Massively Scalable mmWave/5G Applications

    Get PDF
    The 5G era is here and with it comes many challenges, particularily facing the high frequency mmWave adoption. This is because of the cost to implement such dense networks is much greater due to the high propagation losses of signals that range from 26 GHz to 40 GHz. Therefore there needs to be a way to utilize a method of fabrication that can change with the various environments that 5G will be deployed in, be it dense urban areas or suburban sprawl. In this research, the focus is on making these RF components utilized for 5G at low cost and modular with a focus on additive manufacturing. Since additive manufacturing is a rapid prototyping technique, the technology can be quickly adjusted and altered to meet certain specifications with negligible overhead. Several areas of research will be explored. Firstly, various RF passive components such as additively manufactured antennas and couplers with a combination hybrid inkjet and 3D printing will be discussed. Passive components are critical for evaluating the process of additive manufacturing for high frequency operation. Secondly, various structures will be evaluated specifically for packaging mmWave ICs, including interconnects, smart packaging and encapsulants for use in single or multichip modules. Thirdly, various antenna fabrication techniques will be explored which enables fully integrated ICs with antennas, called System on Antenna (SoA) which utilizes both inkjet and 3D printing to combine antennas and ICs into modules. These modules, can then be built into arrays in a modular fashion, allowing for large or smaller arrays to be assembled on the fly. Finally, a method of calibrating the arrays is introduced, utilizing inkjet printed sensors. This allows the sensor to actively detect bends and deformations in the array and restore optimal antenna array performance. Built for flexible phased arrays, the sensor is designed for implementation for ubiquitous use, meaning that its can be placed on any surface, which enables widespread use of 5G technologies.Ph.D

    Cost-effective design and manufacturing of advanced optical interconnects

    Get PDF

    Modeling and Optimization of the Microwave PCB Interconnects Using Macromodel Techniques

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore