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A Comparative Study of Passivity Enforcement
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Abstract—This paper presents a comparative study of several
passivity enforcement schemes for linear lumped macromodels.
We consider three main classes of algorithms. First class is
represented by those methods based on a direct enforcement of
positive/bounded real Lemma constraints via convex optimization.
Second class includes those algorithms that enforce the passivity
constraints at discrete frequency samples. These schemes are here
formulated as second-order cone programs in order to optimize
performance. Finally, we consider algorithms based on Hamil-
tonian eigenvalue perturbation. These three classes are applied to a
significant set of benchmark examples, essentially various kinds of
high-speed interconnects and packages, with the aim of comparing
their performance in terms of accuracy, efficiency, applicability,
and robustness. These examples are specifically selected in order
to be critical for one or more algorithms, in terms of excessive
accuracy degradation, computational complexity, or even lack
of convergence. One important result is that carefully designed
weighting schemes may dramatically improve performance for all
considered algorithm classes.

Index Terms—Bounded real lemma, Hamiltonian matrices,
inverse weighting, linear macromodeling, passivity, positive real
lemma, second-order cone programming.

I. INTRODUCTION

P ASSIVE macromodeling of electrical interconnects,
packages, and components has become a common prac-

tice in the analysis and design of digital, radio frequency (RF),
and mixed signal systems [1], [2]. Macromodeling produces
compact behavioral equivalents starting from field simulation
results or direct measurements, thus enabling fast simulation in
both time and frequency domain since early stages of product
development. Several algorithms exist for the derivation of
macromodels, vector fitting (VF) being the most common
choice in its several formulations [3]–[11].

One main difficulty that must be faced during the derivation
of a macromodel is passivity enforcement. Since any passive
structure or component is unable to generate energy, also the
corresponding models should retain this property [12]–[15].
Otherwise, model use in a numerical simulation may be dan-
gerous, since instabilities may occur [17], [18]. Several papers
addressing passivity enforcement have been recently published.
We can cite direct methods using positive real lemma (PRL) or
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bounded real lemma (BRL) [15] constraints [19]–[21], methods
for passivity enforcement at discrete frequency samples via
linear or quadratic programming [18], [22]–[25], and Hamil-
tonian-based techniques [17], [26], [27]. Variants of the above
schemes have been presented in [28]–[32].

Our main objective is to select the most commonly used al-
gorithms and compare their performance on a set of significant
and challenging examples. To this end, an implementation of
these schemes on a common platform has been realized. This
will enable, in Section V, to draw some general conclusions in
terms of accuracy, robustness, and computational requirements.
One of the main conclusions is that the performance of all algo-
rithms can be dramatically improved if suitable frequency-se-
lective weighting schemes are employed [30]–[32]. These in-
clude inverse weighting for relative error preservation and low-
pass weighting for off-band passivity control.

This paper is organized as follows. Section II introduces the
basic notation and states the main problem. Section III briefly re-
views the considered passivity enforcement schemes, describing
the particular implementation that we use for our comparison.
Section IV presents the weighting schemes that we use to opti-
mize performance. Finally, Section V applies the various tech-
niques to a set of benchmark examples and presents the results.
Main conclusions are drawn in Section VI.

II. PRELIMINARIES AND NOTATION

Throughout this paper , , and denote a generic scalar,
vector (lowercase and boldface), and matrix (uppercase and
boldface), respectively. Superscripts , , and are used for
the complex conjugate, transpose, and conjugate (Hermitian)
transpose, respectively. Operator denotes the Kronecker
matrix product [33], [34], stacks the columns of
in a single column vector, and is the matrix trace. We
will use and to denote the set of eigenvalues and
singular values of , respectively. The matrix 2-norm will be
denoted as .

We consider linear macromodels in state-space form, de-
scribed by the following standard shorthand notation [35]:

(1)

where is the Laplace variable, is the transfer ma-
trix of the macromodel, and are the state-space
matrices of some realization associated to . We will as-
sume a strictly stable macromodel, with all eigenvalues of
confined in the region . Both scattering and hybrid
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(including admittance and impedance) input–output represen-
tations will be considered, for the sake of generality. A unified
formulation will be obtained by defining

hybrid case
scattering case

(2)

The model in (1) is passive when the following conditions are
fulfilled [12]–[15]:

1) is defined and analytic in ;
2) ;
3) .

Note that for scattering representations no poles are allowed on
the imaginary axis [16], and condition 1) must hold for

. This is guaranteed by the working assumption of strict sta-
bility.

Conditions 1) and 3) are guaranteed by most macromodeling
schemes. Conversely, fulfillment of condition 2) poses serious
numerical challenges. This fact motivated significant research
efforts during the last few years, aimed at the definition of fast
and robust algorithms for model passivity enforcement. Sec-
tion III reviews some of these algorithms and describes their
particular implementation that we employ in this work in order
to compare their performance.

III. PASSIVITY ENFORCEMENT SCHEMES

The various passivity enforcement schemes that we compare
in this paper are briefly described in the following subsec-
tions. Namely, our implementation of PRL/BRL constraints
is outlined in Section III-A. We introduce in Section III-B a
second-order-cone programming scheme allowing for passivity
enforcement at discrete frequency samples, leading to global
passivity via iterative application. Finally, we recall the main
steps of recently introduced Hamiltonian perturbation schemes
in Section III-C.

Unless otherwise noted, the generic passivity enforcement
scheme computes a perturbation in the model coefficients, so
that the perturbed model is passive. In this work, we concen-
trate on a perturbation of the single state-space matrix

(3)

which typically stores the residue matrices of the macromodel.
In case the model is not asymptotically passive for , a
direct correction of the direct coupling term can be applied
in a preprocessing stage, following the procedure of [17] and
[22]. The same consideration applies to improper macromodels
in hybrid form that include a linear term , which is not con-
sidered in this work.

The perturbation (3) corresponds to a total of scalar un-
knowns. All considered schemes find a perturbation term
such that the new model is passive, with the accuracy constraint

(4)

Throughout this section, a generic norm will be used to present
the various schemes, since different norms lead to different per-
formance. Various alternatives will be detailed and commented
in Section IV.

A. PRL/BRL

The PRL

(5)

with , and the BRL

(6)

with , are fully equivalent formulations of the
passivity constraints 1)–3) of Section II for hybrid and scattering
representations, respectively [15], [35]. The main advantage of
PRL and BRL is the purely algebraic formulation as a linear
matrix inequality (LMI), which is a convex formulation. Hence,
the direct enforcement of such constraints admits an optimal and
unique solution, which can be achieved in a finite number of
iterations within any prescribed tolerance [36].

Several formulations available in the literature [19]–[21] per-
form a parameterization of the matrix in order to avoid the
constraint on its positive definiteness and to reduce the com-
putational requirements for the numerical solution. We follow
this strategy also in this work, by rewriting PRL and BRL in
block-matrix form, respectively, as

(7)

(8)

In the PRL case (7), we can relate the blocks and ,
since it can be proved [19]–[21] that

(9)

for and , with

(10)

and where matrix is found [19] as the solution of a suitably-
defined Lyapunov equation. As a result, the PRL constraints are
restated for our problem as

(11)
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The same procedure, applied to the BRL case (8) leads to

(12)

The above schemes can be easily modified in order to mini-
mize the model deviation with respect to the frequency samples
(total in the following) of the raw data from which
the macromodel was constructed in first place, instead of min-
imizing the deviation between perturbed and original macro-
model. To this end, the first row in (11), (12) is replaced by

(13)

where is a slack variable. All formulations (11)–(13) can be
solved via convex optimization using one of the several avail-
able solvers. In this work, we employ SEDUMI [37], [38] as
the optimization engine, in combination with the YALMIP driver
[39] for the MATLAB [40] environment.

B. Enforcing Passivity at Discrete Frequencies

A second class of passivity enforcement schemes is based on
the direct enforcement of the passivity constraints at few care-
fully selected frequency samples. This is possible thanks to the
strict stability assumption on the macromodel, which allows to
restate the condition 2) of Section II as

(14)

This condition is checked at a suitably defined set of discrete fre-
quency points. If some frequencies are found that violate (14),
the perturbation (3) is applied to the macromodel, with the aim
of removing all passivity violations and recover global passivity.

There are several possible implementations [18], [22]–[25],
differing on the choice of the frequency samples and on the form
of the constraint (14) that is employed in the optimization loop.
In this work, we consider a projection-based perturbation, that is
able to displace any individual eigenvalue exceeding the critical
threshold 0, at all frequencies that correspond to a local negative
minimum of the eigenvalue trajectories. The total number of
these eigenvalues will be denoted as in the following.

We start by considering a single frequency at which con-
dition (14) is violated by a negative eigenvalue . Let the
corresponding eigenvector of be , normalized
such that . A first-order eigenvalue perturbation anal-
ysis [41] applied to leads to

(15)

where is the matrix perturbation that is required to displace
to the new location . A few straightforward algebraic ma-

nipulations allow to relate this matrix perturbation to the model
perturbation . The result is

(16)

where the row-vector is defined as

(17)

in the scattering case and

(18)

in the hybrid case, with

(19)

and

(20)

Enforcing now leads to the following linear inequality
constraint

(21)

valid for both scattering and hybrid formulations. In the scat-
tering case, we also consider the additional constraint

(22)

since the eigenvalues of must also be bounded by one.
The above constraints are collected and formulated as a

second-order cone program (SOCP)

(23)

where is a slack variable, the first constraint defines a cone in
the embedding vector space, and the last constraint collects (21),
(22) for all eigenvalues to be perturbed. We adopt this formu-
lation since very efficient solvers exist for SOCP optimization.
In this work, we use the SEDUMI optimization engine [37], [38].

The above scheme enforces local passivity only at discrete
frequency points and is thus unable to guarantee global pas-
sivity. Therefore, we embed the above SOCP into an outer itera-
tive process. At each iteration, an adaptive sampling [27] of the
frequency-dependent eigenvalues is performed, and pas-
sivity is enforced using (23) at the frequency samples where the
largest violations are found. Global passivity is usually achieved
in few iterations, as documented in Section V-G.

C. Hamiltonian Perturbation Schemes

The third class of global passivity enforcement schemes that
we consider is based on the iterative perturbation of Hamiltonian
matrices [17], [26], [27]. These matrices are defined as

(24)

with , for hybrid representations, and

(25)

with and for scat-
tering representations. It can be shown that under suitable tech-
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nical assumptions [15], [26], [42], the model (1) is not passive
when the set of (simple) purely imaginary eigenvalues of

(hybrid) or (scattering) is nonempty. We remark that the
above Hamiltonian matrices are constant (frequency-indepen-
dent), so that the determination of all (imaginary) eigenvalues
provides a global passivity characterization, without requiring
any frequency sampling process.

The derivation in [26] shows that passivity is achieved by
iterative first-order perturbation of such eigenvalues . This
can be expressed as a linear constraint as

(26)

where denotes the desired perturbation on the th imaginary
eigenvalue, and

(27)

is the right eigenvector of the Hamiltonian matrix associated to
the eigenvalue . The auxiliary vector is defined as

(28)

in the hybrid case and

(29)

in the scattering case. Collecting all constraints leads to the fol-
lowing optimization problem:

(30)

The above formulation is not convex. This implies that an it-
erative application of (30) may fail to converge. This is indeed
quite common when (for scattering representations)
and is nearly singular (for hybrid representations). In
such cases, the Hamiltonian eigenvalue perturbation becomes
ill-conditioned, as can be easily noted from (24) and (25). An-
other drawback, mainly in terms of computational complexity,
is the requirement of extracting all imaginary eigenvalues of the
Hamiltonian matrix in order to write (30). Some techniques for
speeding up this operation and potentially allowing for nearly
linear complexity are documented in [17] and [27] and are ex-
ploited in our implementation. On the other hand, the very lim-
ited number of equality constraints (one for each imaginary
Hamiltonian eigenvalue, in the following), allows for the nu-
merical solution using standard pseudoinverse methods [40] in
negligible time.

IV. ACCURACY PRESERVATION AND WEIGHTING SCHEMES

All passivity enforcement schemes presented in Section III
are complemented by the accuracy control condition (4). In this
section, we present various alternative definitions of this norm,
which lead to dramatically different performances.

The standard choice is to minimize the global energy (squared
-norm) in the model perturbation , which can be expressed

as

(31)

where is the controllability Gramian [13] associated to (1).
The main advantage of this definition is the purely algebraic
characterization of the norm in terms of the state-space pertur-
bation , which allows a direct use of (31) within all presented
schemes (11), (12), (23), and (30).

The major drawback of norm (31) is evident from its defini-
tion. This norm provides an absolute error metric over the entire
frequency axis. However, we are only interested in the model
responses within the modeling bandwidth, say . The
off-band behavior of the model is not relevant, as far as the final
model is guaranteed to be globally passive. Consequently, a ban-
dlimited accuracy metric is more desirable. This can be achieved
as

(32)

where is the frequency response of a lowpass filter with
a sharp cutoff at . Also this norm has a purely alge-
braic representation, similar to (31), but employing a modified
weighted Gramian . This matrix is readily computed starting
from (1) and from the state-space realization of the filter

(33)

The reader is referred to [35], [43], and [44] for basic definitions,
and to [31] and [32] for implementation details. In all our tests
we used an elliptic filter with in-band ripple less than 0.2 dB and
off-band attenuation larger than 40 dB.

The filter can have any arbitrary frequency response,
as far as its state-space representation (33) is known. Therefore,
is it quite straightforward to adapt (32) so that it represents the
(elementwise) relative error instead of the absolute error (31).
It is sufficient to define a different weight for each individual
transfer matrix element

(34)

where the partial state-space representation matrices
are readily extracted from (1). This in-

verse weighting is useful for all applications that require
relative accuracy preservation over a large dynamic range,
including components and packages for RF and mixed-signal
applications. See [31] for details.
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V. BENCHMARKS

We now compare the performance of all passivity enforce-
ment schemes applied to several benchmark examples (some of
these examples will be made available online ). In all cases, a
suitable implementation of the VF scheme [11] was used to de-
rive an initial macromodel from raw frequency data. The various
passivity enforcement schemes were then applied to this orig-
inal (nonpassive) macromodel for all benchmarks. Labeling of
all results will be consistent in this section, according to the fol-
lowing notation.

Raw data (frequency samples) used to extract
the macromodel in first place.

Original (nonpassive) macromodel.

Bounded real constraints, with model error
minimization, as in (12).

Bounded real constraints with data error
minimization, as in (13).

Second-order cone constraints at discrete
frequency samples, as in (23).

Hamiltonian perturbation constraints, as in (30).

This suffix denotes inverse weighting (34)
applied in conjunction with any of the above
formulations.

This suffix denotes lowpass weighting (32)
applied in conjunction with any of the above
formulations.

Sections V-A–V-F present the results for each individual bench-
mark. Section V-G will summarize the computational require-
ments for all cases.

A. Low-Complexity Package

The first example is a package structure with only mod-
eled ports, over a 2-GHz bandwidth. Due to the small electrical
size, only six poles are needed to fit each response, leading to an
overall macromodel dynamic size . The moderate com-
plexity of the macromodel allows application of all techniques
presented in Section III. Main difficulty with this example is
represented by the very large passivity violation that occurs for
frequencies outside the modeled bandwidth. Fig. 1 shows a max-
imum singular value of the model responses exceeding 2 around
4.2 GHz.

The only method that is able to preserve a good accuracy
during passivity enforcement is BRD. All other methods that
attempt accuracy preservation with respect to the original non-
passive macromodel fail, as illustrated by Fig. 2. This failure is
easily justified, since the standard norm (31) provides a mea-
sure of the model perturbation over the entire frequency axis,
whereas we are only interested in accuracy preservation up to 2
GHz. Any procedure that minimizes this norm will take into ac-
count the model responses beyond 2 GHz. Therefore, the large
perturbation required in this case destroys model accuracy at all
frequencies during passivity enforcement.

1http://www.emc.polito.it/macro

Fig. 1. Singular values of the nonpassive package model of Section V-A.

Fig. 2. Responses of various passive models compared to raw scattering data
for the package structure of Section V-A.

The situation changes when a suitable lowpass filter is
used in the definition of the accuracy metric, as described
in Section IV. This lowpass filter reduces dramatically the
significance of the model perturbation for off-band frequencies,
leading to a behavior similar to BRD. Indeed, Fig. 3 shows
that all methods perform equally well, as far as a good lowpass
weighting scheme is adopted.

B. Connector

The second example is a large connector, with mod-
eled ports over a 20-GHz bandwidth. Many poles are required
for each element of the scattering matrix, resulting in a macro-
model dynamic order . In this situation, model com-
plexity is far from being tractable with BR-type constraints,
mainly due to the excessive number of unknowns in the opti-
mization problems (12) and (13). The passivity violation is mod-
erate, see Fig. 4, showing a peak in some singular value curves
slightly outside the modeled bandwidth.

Fig. 5 shows the results obtained with the two applicable
schemes, which were run with standard absolute error mini-
mization and no weighting. Accuracy is excellent for all re-
sponses, including small crosstalk values such as the scattering
response depicted in the plot.
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Fig. 3. As in Fig. 2, but employing a lowpass weighted norm during passivity
enforcement.

Fig. 4. Singular values of the nonpassive connector model of Section V-B.

Fig. 5. Responses of various passive models compared to raw scattering data
for the connector of Section V-B.

Fig. 6. Singular values of the non-passive via field model of Section V-C.

Fig. 7. Responses of various passive models compared to raw scattering data
for the via field of Section V-C.

C. Via Field

This example is a via field on a multilayer PCB, with
modeled ports over a 10-GHz bandwidth. As in Section V-A, the
moderate electrical size requires few poles for each response,
leading to a macromodel dynamic order . Also in this
case the passivity violation is quite large, but mainly restricted
outside the modeled bandwidth, see Fig. 6. Both BRD and BRM
methods failed due to excessive memory requirements in the
formulation of the optimization problems (12) and (13).

Fig. 7 shows the results of standard SOC and HAM methods
on a transmission coefficient. Accuracy degradation is signifi-
cant, due to the large perturbation required to reduce the model
singular values below one. As for Section V-A, a large off-band
passivity violation degrades in-band accuracy, unless a suitable
weighting scheme is used. Fig. 8 reports the results obtained
with a lowpass filter with cutoff at the edge of the modeled band-
width. Accuracy is now excellent.

D. Another via Field

This example is another PCB via field, with modeled
ports over a 15-GHz bandwidth, resulting in a macromodel dy-
namic order . This example introduces an additional
difficulty with respect to Section V-C. As depicted in the top
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Fig. 8. As in Fig. 7, but employing a lowpass weighted norm during passivity
enforcement.

Fig. 9. Singular values of the non-passive via field model of Section V-D. Top
panel refers to the unconstrained model, bottom panel refers to the model with
an asymptotic hard bound on the singular values, see text.

panel of Fig. 9, the high-frequency asymptotic behavior of some
singular values approaches one. This was verified by computing

. In such cases, the HAM formulation of Sec-
tion III-C results ill-conditioned, and it is very likely that accu-
racy is seriously degraded, the number of iterations is too large,
or the scheme is even nonconverging. Lack of convergence was
indeed the case. In order to improve HAM convergence, a new
model was generated by enforcing as a hard con-
straint during the computation of poles and residues via VF,
using the strategy described in [17]. The particular value to be

Fig. 10. Responses of various passive models compared to raw scattering data
for the via field of Section V-D.

Fig. 11. As in Fig. 10, but employing a lowpass weighted norm during passivity
enforcement.

used for is not critical, as far as it is not too close to one.
The resulting singular values are depicted in the bottom panel of
Fig. 9. We remark that in-band model accuracy was comparable
in both cases.

Figs. 10 and 11 report the results of HAM and SOC schemes
(BRM and BRD were not applicable due to model complexity)
applied to this new macromodel without and with lowpass
weighting, respectively. As expected, due to the large off-band
passivity violations (here both in terms of maximum singular
value and width of violation frequency band), the lowpass-fil-
tered implementations outperform the standard schemes.

E. Package With High Dynamic Range

This example illustrates the need of advanced inverse
weighting schemes. The structure is a package with



680 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 31, NO. 4, NOVEMBER 2008

Fig. 12. Singular values of the nonpassive package model of Section V-E.

Fig. 13. Responses of various passive models compared to raw scattering data
for the via field of Section V-E.

modeled ports over a bandwidth of 5 GHz, for which a macro-
model having dynamic order was derived from
frequency-domain scattering responses. The main difficulty
with this example is the extended dynamic range of several
responses, which must be accurate over a frequency range span-
ning several decades and starting from 100 Hz. The passivity
violations of the original macromodel, depicted in Fig. 12, are
moderate in value but located at widely separated frequencies.

Passivity was enforced using SOC and HAM schemes with
standard absolute error control, obtaining poor results. Fig. 13
shows significant accuracy degradation where the responses
have small magnitude. This level of accuracy is not sufficient to
model the isolation level between the various package pins over
the required frequency range. This problem was solved using
inverse weighting in the definition of the accuracy metric, as
described in Section IV. The corresponding results, depicted in
Fig. 14, show that both schemes perform equally well.

F. High Complexity Package

The last example we consider is a large QFN package struc-
ture with modeled ports up to 25 GHz. The dynamic
order of the macromodel is . This benchmark illustrates
the main difficulties that are encountered when the number of

Fig. 14. As in Fig. 13, but employing an inverse weighted norm during pas-
sivity enforcement for relative error control.

Fig. 15. Singular values of the nonpassive package model of Section V-F. The
model was constructed with a hard bound of 0.7 on the asymptotic singular
values.

modeled ports becomes very large. Although the in-band accu-
racy can be easily controlled, off-band model behavior may be
very poor, as illustrated by the singular value plot of Fig. 15.

As for example Section V-D, the HAM scheme failed to
converge due to the nearly singular Hamiltonian matrix re-
sulting from . Therefore, a hard constraint on the
largest asymptotic singular value was enforced to limit its
value to 0.7, resulting in a well-behaved Hamiltonian matrix.
Nonetheless, application of standard HAM and SOC schemes
led to passivity compensation, with serious accuracy degrada-
tion. Figs. 16 and 17 show the behavior of the corresponding
passive models on a crosstalk and a transmission response,
respectively. An aggressive lowpass filter was necessary to re-
duce the effects of the off-band model behavior in the accuracy
metric, as described in Section IV. The results are depicted in
Figs. 18 and 19, showing excellent accuracy even for small
responses.

G. Computational Requirements

We now compare the computational requirements of the var-
ious passivity enforcement methods, with reference to each an-
alyzed benchmark. Table I summarizes the execution time and
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Fig. 16. Crosstalk responses of various passive models compared to raw scat-
tering data for the package structure of Section V-F.

Fig. 17. Transmission responses of various passive models compared to raw
scattering data for the package structure of Section V-F.

the number of iterations for each case. We remark that these
results account for all operations, including adaptive frequency
sampling (whenever required) and eigenvalue computation. All
obtained macromodels were globally passive. All simulations
were run on the same PC with a Pentium IV processor running
at 3-GHz clock and with 2 GB of RAM. The table supports the
following conclusions.

• BRM and BRD methods are more CPU demanding than
HAM and SOC methods and applicable only to low-com-
plexity models. This is readily justified, since the number
of BRM/BRD unknowns is , whereas the
number of HAM/SOC unknowns is only .

• Convergence of SOC is generally faster than HAM in terms
of number of iterations.

• SOC requires a larger mean time per iteration than HAM.

Fig. 18. As in Fig. 16, but employing a lowpass weighted norm during passivity
enforcement.

Fig. 19. As in Fig. 17, but employing a lowpass weighted norm during passivity
enforcement.

• Lowpass weighting (whenever appropriate) improves sig-
nificantly convergence and CPU time for both HAM and
SOC.

In order to support these conclusions on a statistically mean-
ingful set, we deployed an automated process for processing a
large number of synthetic examples, parameterized by their dy-
namic order and their number of ports . This process is based
on the following steps.

1) Given a prescribed dynamic order , the macromodel poles
are randomly selected with a uniform distribution over the
normalized model bandwidth. Each pole has a constant
ratio between real and imaginary part.

2) Residue matrices are also randomly generated and scaled
in order to set , with .

3) A total of independent model realizations are generated
for each combination of and .
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TABLE I
COMPUTATIONAL REQUIREMENTS

with hard threshold on �����

Fig. 20. Mean CPU time per iteration required by different techniques, applied
to a statistically significant set of synthetic nonpassive macromodels. See also
text.

In all our tests, we used , and to insure
consistency between all synthetic macromodels when and
are varied.

Application of BRM, HAM, and SOC schemes leads to the
results depicted in Fig. 20. The plot reports the mean CPU time
per iteration. As expected, the complexity of BRM prevents its
application unless the dynamic order is very small. The corre-
sponding scaling law with is approximately , with .
Conversely, the scaling law for HAM and SOC has a much more

favorable behavior as , with . We can also estimate the
scaling with the number of ports (HAM and SOC only) by
keeping fixed, obtaining , with . Noting that in our
state-space realization each column of the transfer matrix has

poles, the complexity of both HAM and SOC indi-
vidual iterations can be estimated as . Although each
SOC iteration is slower with respect to HAM, passivity correc-
tion with SOC is generally faster since the number of required
iterations is smaller, as confirmed by Table I.

Finally, we remark that data-based accuracy constraints such
as (13) are virtually equivalent to using an ideal lowpass filter
having infinite off-band attenuation. It is thus expected that such
constraints provide the best in-band accuracy when combined
with any of the proposed schemes. Unfortunately, the associated
computational complexity prevents their use for medium and
large-size models. For this reason, we did not implement such
constraints with the SOC and HAM schemes, which thus remain
the only viable solution for large-scale passive macromodeling,
as documented in Section V.

VI. CONCLUSION

This paper presented a thorough comparison between several
different classes of passivity enforcement schemes for lumped
macromodels. Each scheme has both advantages and disadvan-
tages. In summary, all methods based on BRL/PRL constraints
are known to provide the optimal solution, but are only appli-
cable to low-complexity models due to their very large compu-
tational requirements, both in terms of memory and CPU time.
Suboptimal techniques such as iterative passivity enforcement
at discrete frequency samples or global enforcement via pertur-
bation of Hamiltonian matrices are only suboptimal and some-
times fail. However, they are applicable to larger structures, with
a favorable scaling with the model complexity. The numerical
performance of all techniques in terms of accuracy is dramat-
ically improved when suitable frequency-selective weighting
schemes are adopted.
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