432 research outputs found

    An algebraic characterization of BB-convergent Runge-Kutta methods

    Get PDF

    Model Problems in Numerical Stability Theory for Initial Value Problems

    Get PDF
    In the past numerical stability theory for initial value problems in ordinary differential equations has been dominated by the study of problems with simple dynamics; this has been motivated by the need to study error propagation mechanisms in stiff problems, a question modeled effectively by contractive linear or nonlinear problems. While this has resulted in a coherent and self-contained body of knowledge, it has never been entirely clear to what extent this theory is relevant for problems exhibiting more complicated dynamics. Recently there have been a number of studies of numerical stability for wider classes of problems admitting more complicated dynamics. This on-going work is unified and, in particular, striking similarities between this new developing stability theory and the classical linear and nonlinear stability theories are emphasized. The classical theories of A, B and algebraic stability for Runge–Kutta methods are briefly reviewed; the dynamics of solutions within the classes of equations to which these theories apply—linear decay and contractive problems—are studied. Four other categories of equations—gradient, dissipative, conservative and Hamiltonian systems—are considered. Relationships and differences between the possible dynamics in each category, which range from multiple competing equilibria to chaotic solutions, are highlighted. Runge-Kutta schemes that preserve the dynamical structure of the underlying problem are sought, and indications of a strong relationship between the developing stability theory for these new categories and the classical existing stability theory for the older problems are given. Algebraic stability, in particular, is seen to play a central role. It should be emphasized that in all cases the class of methods for which a coherent and complete numerical stability theory exists, given a structural assumption on the initial value problem, is often considerably smaller than the class of methods found to be effective in practice. Nonetheless it is arguable that it is valuable to develop such stability theories to provide a firm theoretical framework in which to interpret existing methods and to formulate goals in the construction of new methods. Furthermore, there are indications that the theory of algebraic stability may sometimes be useful in the analysis of error control codes which are not stable in a fixed step implementation; this work is described

    Error analysis of implicit and exponential time integration of linear Maxwell\u27s equations

    Get PDF
    This thesis is concerned with the numerical analysis of some well-known time integration methods, such as implicit collocation methods and exponential integrators, for linear Maxwell\u27s equations in time-domain. The error analysis of time integrators is done both for continuous Maxwell\u27s equations in a semigroup theory framework and for space discrete problem obtained by discretizing Maxwell\u27s equations in space by using discontinuous Galerkin finite element method

    Continuous Methods for Elliptic Inverse Problems

    Get PDF
    Numerous mathematical models in applied and industrial mathematics take the form of a partial differential equation involving certain variable coefficients. These coefficients are known and they often describe some physical properties of the model. The direct problem in this context is to solve the partial differential equation. By contrast, an inverse problem asks for the identification of the variable coefficient when a certain measurement of a solution of the partial differential equation is available. A commonly used approach to inverse problems is to solve an optimization problem whose solution is an approximation of the sought coefficient. Such optimization problems are typically solved by discrete iterative schemes. It turns out that most known iterative schemes have their continuous counterparts given in terms of dynamical systems. However, such differential equations are usually solved by specific differential equation solvers. The primary objective of this thesis is to test the feasibility of differential equations based solvers for solving elliptic inverse problems. We will use differential equation solvers such as Euler\u27s Method, Trapezoidal Method, Runge-Kutta Method and Adams-Bashforth Method. In addition, these solvers will also be compared to built-in MATLAB ODE solvers. The performance and accuracy of these methods to solve inverse problems will be thoroughly discussed

    Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review

    Get PDF
    A review of diagonally implicit Runge-Kutta (DIRK) methods applied to rst-order ordinary di erential equations (ODEs) is undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRKtype methods are reviewed. A design study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on the review of method characteristics, these methods focus on having a stage order of two, sti accuracy, L-stability, high quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving sti problems at moderate error tolerances
    • …
    corecore