8,492 research outputs found

    Free-space quantum links under diverse weather conditions

    Full text link
    Free-space optical communication links are promising channels for establishing secure quantum communication. Here we study the transmission of nonclassical light through a turbulent atmospheric link under diverse weather conditions, including rain or haze. To include these effects, the theory of light transmission through atmospheric links in the elliptic-beam approximation presented by Vasylyev et al. [D. Vasylyev et al., Phys. Rev. Lett. 117, 090501 (2016); arXiv:1604.01373] is further generalized.It is demonstrated, with good agreement between theory and experiment, that low-intensity rain merely contributes additional deterministic losses, whereas haze also introduces additional beam deformations of the transmitted light. Based on these results, we study theoretically the transmission of quadrature squeezing and Gaussian entanglement under these weather conditions.Comment: 14 pages, 8 figure

    MIMO Underwater Visible Light Communications: Comprehensive Channel Study, Performance Analysis, and Multiple-Symbol Detection

    Full text link
    In this paper, we analytically study the bit error rate (BER) performance of underwater visible light communication (UVLC) systems with binary pulse position modulation (BPPM). We simulate the channel fading-free impulse response (FFIR) based on Monte Carlo numerical method to take into account the absorption and scattering effects. Additionally, to characterize turbulence effects, we multiply the aforementioned FFIR by a fading coefficient which for weak oceanic turbulence can be modeled as a lognormal random variable (RV). Moreover, to mitigate turbulence effects, we employ multiple transmitters and/or receivers, i.e., spatial diversity technique over UVLC links. Closed-form expressions for the system BER are provided, when equal gain combiner (EGC) is employed at the receiver side, thanks to Gauss-Hermite quadrature formula and approximation to the sum of lognormal RVs. We further apply saddle-point approximation, an accurate photon-counting-based method, to evaluate the system BER in the presence of shot noise. Both laser-based collimated and light emitting diode (LED)-based diffusive links are investigated. Since multiple-scattering effect of UVLC channels on the propagating photons causes considerable inter-symbol interference (ISI), especially for diffusive channels, we also obtain the optimum multiple-symbol detection (MSD) algorithm to significantly alleviate ISI effects and improve the system performance. Our numerical analysis indicates good matches between the analytical and photon-counting results implying the negligibility of signal-dependent shot noise, and also between analytical results and numerical simulations confirming the accuracy of our derived closed-form expressions for the system BER. Besides, our results show that spatial diversity significantly mitigates fading impairments while MSD considerably alleviates ISI deteriorations

    Performance of Spatial Diversity DCO-OFDM in a Weak Turbulence Underwater Visible Light Communication Channel

    Get PDF
    The performance of underwater visible light communication (UVLC) system is severely affected by absorption, scattering and turbulence. In this article, we study the performance of spectral efficient DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) in combination with the transceiver spatial diversity in turbulence channel. Based on the approximation of the weighted sum of lognormal random variables (RVs), we derived a theoretical exact bit error rate (BER) for DCO-OFDM systems with spatial diversity. The simulation results are compared with the analytical prediction, confirming the validity of the analysis. It is shown that spatial diversity can effectively reduce the turbulence-induced channel fading. The obtained results can be useful for designing, predicting, and evaluating the DCO-OFDM UVLC system in a weak oceanic turbulence condition
    • …
    corecore