5,804 research outputs found

    Production matrices for geometric graphs

    Get PDF
    We present production matrices for non-crossing geometric graphs on point sets in convex position, which allow us to derive formulas for the numbers of such graphs. Several known identities for Catalan numbers, Ballot numbers, and Fibonacci numbers arise in a natural way, and also new formulas are obtained, such as a formula for the number of non-crossing geometric graphs with root vertex of given degree. The characteristic polynomials of some of these production matrices are also presented. The proofs make use of generating trees and Riordan arrays.Postprint (updated version

    Characteristic polynomials of production matrices for geometric graphs

    Get PDF
    An n×n production matrix for a class of geometric graphs has the property that the numbers of these geometric graphs on up to n vertices can be read off from the powers of the matrix. Recently, we obtained such production matrices for non-crossing geometric graphs on point sets in convex position [Huemer, C., A. Pilz, C. Seara, and R.I. Silveira, Production matrices for geometric graphs, Electronic Notes in Discrete Mathematics 54 (2016) 301–306]. In this note, we determine the characteristic polynomials of these matrices. Then, the Cayley-Hamilton theorem implies relations among the numbers of geometric graphs with different numbers of vertices. Further, relations between characteristic polynomials of production matrices for geometric graphs and Fibonacci numbers are revealed.This project has received funding from the European Union’s Horizon 89 2020 research and innovation programme under the Marie Sk lodowska- 90 Curie grant agreement No 734922. 91 C. H., C. S., and R. I. S. were partially supported by projects MINECO MTM2015- 92 63791-R and Gen. Cat. DGR2014SGR46. R. I. S. was also supported by MINECO 93 through the Ramon y Cajal programPostprint (published version

    New results on production matrices for geometric graphs

    Get PDF
    We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another way of counting the number of such objects. For instance, a formula for the number of connected geometric graphs with given root degree, drawn on a set of n points in convex position in the plane, is presented. Further, we find the characteristic polynomials and we provide a characterization of the eigenvectors of the production matrices.Postprint (author's final draft

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    A new lower bound on the maximum number of plane graphs using production matrices

    Get PDF
    © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We use the concept of production matrices to show that there exist sets of n points in the plane that admit ¿(42.11n ) crossing-free geometric graphs. This improves the previously best known bound of ¿(41.18n ) by Aichholzer et al. (2007).Postprint (author's final draft

    Energy flow polynomials: A complete linear basis for jet substructure

    Get PDF
    We introduce the energy flow polynomials: a complete set of jet substructure observables which form a discrete linear basis for all infrared- and collinear-safe observables. Energy flow polynomials are multiparticle energy correlators with specific angular structures that are a direct consequence of infrared and collinear safety. We establish a powerful graph-theoretic representation of the energy flow polynomials which allows us to design efficient algorithms for their computation. Many common jet observables are exact linear combinations of energy flow polynomials, and we demonstrate the linear spanning nature of the energy flow basis by performing regression for several common jet observables. Using linear classification with energy flow polynomials, we achieve excellent performance on three representative jet tagging problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. The energy flow basis provides a systematic framework for complete investigations of jet substructure using linear methods.Comment: 41+15 pages, 13 figures, 5 tables; v2: updated to match JHEP versio

    Renormalization: an advanced overview

    Full text link
    We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.Comment: Review, 130 pages, 33 figures; v2: misprints corrected, refs. added, minor improvements; v3: some changes to sect. 5, refs. adde
    • …
    corecore