10,581 research outputs found

    Interaction between zeolites and cluster compounds. Part 2.—Thermal decomposition of iron pentacarbonyl on zeolites

    Get PDF
    Thermal decomposition in a thermobalance of Fe(CO)5 adsorbed on alkali-metal, hydrogen-Y, dealuminated Y, L and omega zeolites proceeds stepwise via slow decarbonylation at low and high temperatures, separated by a fast endothermic reaction. Average CO/Fe ratios have been determined after each step. From i.r. results the former intermediates are assigned to species bearing bridging CO, whereas reaction products with CO/Fe < 1 are associated with highly unsaturated carbonyl clusters in strong interaction with the zeolite.The thermal stability of zeolite/Fe(CO)5 adducts as well as of the intermediates increases with the electron-donor properties of the matrix and can be rationalized using the Sanderson electronegativity concept. Iron loadings ranging from 2.4 wt % in zeolite L up to 10 wt % with NaY and HY are obtained by decomposition in inert atmosphere. Under vacuum conditions loss of metal up to 50% is observed. Metallic iron clusters are the final decomposition products in alkali-metal zeolites, as probed by NO adsorption. In HY part of the metallic iron is oxidized to FeII ions, which are located at cation positions

    Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Perez-Jorge, S., Tobena, M., Prieto, R., Vandeperre, F., Calmettes, B., Lehodey, P., & Silva, M. A. Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean. Diversity and Distributions, 00, (2020): 1-16, doi:10.1111/ddi.13038.Aim Understanding the environmental drivers of movement and habitat use of highly migratory marine species is crucial to implement appropriate management and conservation measures. However, this requires quantitative information on their spatial and temporal presence, which is limited in the high seas. Here, we aimed to gain insights of the essential habitats of three baleen whale species around the mid‐North Atlantic (NA) region, linking their large‐scale movements with information on oceanographic and biological processes. Location Mid‐NA Ocean. Methods We present the first study combining data from 31 satellite tracks of baleen whales (15, 10 and 6 from fin, blue and sei whales, respectively) from March to July (2008–2016) with data on remotely sensed oceanography and mid‐ and lower trophic level biomass derived from the spatial ecosystem and population dynamics model (SEAPODYM). A Bayesian switching state‐space model was applied to obtain regular tracks and correct for location errors, and pseudo‐absences were created through simulated positions using a correlated random walk model. Based on the tracks and pseudo‐absences, we applied generalized additive mixed models (GAMMs) to determine the probability of occurrence and predict monthly distributions. Results This study provides the most detailed research on the spatio‐temporal distribution of baleen whales in the mid‐NA, showing how dynamic biophysical processes determine their habitat preference. Movement patterns were mainly influenced by the interaction of temperature and the lower trophic level biomass; however, this relationship differed substantially among species. Best‐fit models suggest that movements of whales migrating towards more productive areas in northern latitudes were constrained by depth and eddy kinetic energy. Main conclusions These novel insights highlight the importance of integrating telemetry data with spatially explicit prey models to understand which factors shape the movement patterns of highly migratory species across large geographical scales. In addition, our outcomes could contribute to inform management of anthropogenic threats to baleen whales in sparsely surveyed region.We are very grateful to ClĂĄudia Oliveira, Irma CascĂŁo, Maria JoĂŁo Cruz, Miriam Romagosa and many volunteers, skilled skippers, crew and spotters that participated in the tagging fieldwork. This work was supported by Fundação para a CiĂȘncia e Tecnologia (FCT), Azores 2020 Operational Programme and Fundo Regional da CiĂȘncia e Tecnologia (FRCT) through research projects FCT‐Exploratory project (IF/00943/2013/CP1199/CT0001), TRACE (PTDC/MAR/74071/2006) and MAPCET (M2.1.2/F/012/2011) co‐funded by FEDER, COMPETE, QREN, POPH, ESF, ERDF, Portuguese Ministry for Science and Education, and Proconvergencia Açores/EU Program. We also acknowledge funds provided by FCT to MARE, through the strategic project UID/MAR/04292/2013. SPJ was supported by a postdoctoral grant (REF.GREENUP/001‐2016), MT by a DRCT doctoral grant (M3.1.a/F/028/2015), MAS by an FCT‐Investigator contract (IF/00943/2013), FV by an FCT Investigator contract (CEECIND/03469/2017) and RP by an FCT postdoctoral grant (SFRH/BPD/108007/2015). LMTL modelling work has been supported by the CMEMS Service Evolution GREENUP project, funded by Mercator Ocean. We are grateful to Elliott Hazen for offering guidance and advice, and to two anonymous referees whose comments greatly improved this work

    Promoting light hydrocarbons yield by catalytic hydrodechlorination of residual chloromethanes using palladium supported on zeolite catalysts

    Get PDF
    Gas catalytic hydrodechlorination (HDC) of trichloromethane (TCM) and dichloromethane (DCM) was analyzed using Pd (1 wt.%) on different zeolites as catalysts. The aim of this study was to know the surface properties of the catalysts and reaction conditions that promote the yield to light hydrocarbons in this reaction. Five different zeolite supports were used from three commercial zeolites (KL, L-type; NaY, Faujasite; H-MOR, Mordenite). KL and NaY were submitted to ionic exchange treatments in order to increase their acidity and analyze the effect of the acidity in the activity and selectivity of the HDC reaction. Exchanged zeolites (HL and HY) showed the highest Pd dispersion due to their higher surface acidity. The best TCM/DCM conversion and selectivity to light hydrocarbons was obtained using the two non-exchanged zeolite-catalysts, KL and NaY. Low surface acidity seems to be the key aspect to promote the formation of light hydrocarbons. The formation of these products is favored at high reaction temperatures and low H2: chloromethane ratios. KL showed the highest selectivity to olefins (60%), although with a lower dechlorination degree. Non-exchanged NaY catalyst showed high selectivity to paraffins (70% and 95% for the HDC of DCM and TCM, respectively)Authors gratefully acknowledge financial support from FEDER/Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación/ CTM2017-85498-R. C. Fernández Ruiz acknowledges MINECO for his research gran

    Jeeg: Temporal Constraints for the Synchronization of Concurrent Objects

    No full text
    We introduce Jeeg, a dialect of Java based on a declarative replacement of the synchronization mechanisms of Java that results in a complete decoupling of the 'business' and the 'synchronization' code of classes. Synchronization constraints in Jeeg are expressed in a linear temporal logic which allows to effectively limit the occurrence of the inheritance anomaly that commonly affects concurrent object oriented languages. Jeeg is inspired by the current trend in aspect oriented languages. In a Jeeg program the sequential and concurrent aspects of object behaviors are decoupled: specified separately by the programmer these are then weaved together by the Jeeg compiler

    Curcumin-loaded zeolite as anticancer drug carrier: Effect of curcumin adsorption on zeolite structure

    Get PDF
    In this work we used a combination of different techniques to investigate the adsorption properties of curcumin by zeolite type A for potential use as an anticancer drug carrier. Curcumin is a natural water-insoluble drug that has attracted great attention in recent years due to its potential anticancer effect in suppressing many types of cancers, while showing a synergistic antitumor effect with other anticancer agents. However, curcumin is poorly soluble in aqueous solutions leading to the application of high drug dosage in oral formulations. Zeolites, inorganic crystalline aluminosilicates with porous structure on the nano- and micro-scale and high internal surface area, can be useful as pharmaceutical carrier systems to encapsulate drugs with intrinsic low aqueous solubility and improve their dissolution. Here, we explore the use of zeolite type A for encapsulation of curcumin, and we investigate its surface properties and morphology, before and after loading of the anticancer agent, using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and UV-vis spectroscopy. Results are used to assess the loading efficiency of zeolite type A towards curcumin and its structural stability after loading
    • 

    corecore