3 research outputs found

    Continuous vital monitoring during sleep and light activity using carbon-black elastomer sensors

    Get PDF
    The comfortable, continuous monitoring of vital parameters is still a challenge. The long-term measurement of respiration and cardiovascular signals is required to diagnose cardiovascular and respiratory diseases. Similarly, sleep quality assessment and the recovery period following acute treatments require long-term vital parameter datalogging. To address these requirements, we have developed “VitalCore”, a wearable continuous vital parameter monitoring device in the form of a T-shirt targeting the uninterrupted monitoring of respiration, pulse, and actigraphy. VitalCore uses polymer-based stretchable resistive bands as the primary sensor to capture breathing and pulse patterns from chest expansion. The carbon black-impregnated polymer is implemented in a U-shaped configuration and attached to the T-shirt with “interfacing” material along with the accompanying electronics. In this paper, VitalCore is bench tested and compared to gold standard respiration and pulse measurements to verify its functionality and further to assess the quality of data captured during sleep and during light exercise (walking). We show that these polymer-based sensors could identify respiratory peaks with a sensitivity of 99.44%, precision of 96.23%, and false-negative rate of 0.557% during sleep. We also show that this T-shirt configuration allows the wearer to sleep in all sleeping positions with a negligible difference of data quality. The device was also able to capture breathing during gait with 88.9%–100% accuracy in respiratory peak detection

    Characterisation of morphic sensors for body volume and shape applications

    Get PDF
    Stretchable conductive materials are originally conceived as radio frequency (RF) and electromagnetic interference (EMI) shielding materials, and, under stretch, they generally function as distributed strain-gauges. These commercially available conductive elastomers have found their space in low power health monitoring systems, for example, to monitor respiratory and cardiac functions. Conductive elastomers do not behave linearly due to material constraints; hence, when used as a sensor, a full characterisation to identify ideal operating ranges are required. In this paper, we studied how the continuous stretch cycles affected the material electrical and physical properties in different embodiment impressed by bodily volume change. We simulated the stretch associated with breathing using a bespoke stress rig to ensure reproducibility of results. The stretch rig is capable of providing constant sinusoidal waves in the physiological ranges of extension and frequency. The material performances is evaluated assessing the total harmonic distortion (THD), signal-to-noise ratio (SNR), correlation coefficient, peak to peak (P-P) amplitude, accuracy, repeatability, hysteresis, delay, and washability. The results showed that, among the three controlled variables, stretch length, stretch frequency and fabric width, the most significant factor to the signal quality is the stretch length. The ideal working region is within 2% of the original length. The material cut in strips of >3 mm show more reliable to handle a variety of stretch parameter without losing its internal characteristics and electrical properties
    corecore