419 research outputs found

    Character-Aware Neural Language Models

    Full text link
    We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.Comment: AAAI 201

    Empower Sequence Labeling with Task-Aware Neural Language Model

    Full text link
    Linguistic sequence labeling is a general modeling approach that encompasses a variety of problems, such as part-of-speech tagging and named entity recognition. Recent advances in neural networks (NNs) make it possible to build reliable models without handcrafted features. However, in many cases, it is hard to obtain sufficient annotations to train these models. In this study, we develop a novel neural framework to extract abundant knowledge hidden in raw texts to empower the sequence labeling task. Besides word-level knowledge contained in pre-trained word embeddings, character-aware neural language models are incorporated to extract character-level knowledge. Transfer learning techniques are further adopted to mediate different components and guide the language model towards the key knowledge. Comparing to previous methods, these task-specific knowledge allows us to adopt a more concise model and conduct more efficient training. Different from most transfer learning methods, the proposed framework does not rely on any additional supervision. It extracts knowledge from self-contained order information of training sequences. Extensive experiments on benchmark datasets demonstrate the effectiveness of leveraging character-level knowledge and the efficiency of co-training. For example, on the CoNLL03 NER task, model training completes in about 6 hours on a single GPU, reaching F1 score of 91.71±\pm0.10 without using any extra annotation.Comment: AAAI 201

    Syllable-aware Neural Language Models: A Failure to Beat Character-aware Ones

    Get PDF
    Syllabification does not seem to improve word-level RNN language modeling quality when compared to character-based segmentation. However, our best syllable-aware language model, achieving performance comparable to the competitive character-aware model, has 18%-33% fewer parameters and is trained 1.2-2.2 times faster.Comment: EMNLP 201

    Strawman: an Ensemble of Deep Bag-of-Ngrams for Sentiment Analysis

    Full text link
    This paper describes a builder entry, named "strawman", to the sentence-level sentiment analysis task of the "Build It, Break It" shared task of the First Workshop on Building Linguistically Generalizable NLP Systems. The goal of a builder is to provide an automated sentiment analyzer that would serve as a target for breakers whose goal is to find pairs of minimally-differing sentences that break the analyzer.Comment: A builder entry to the sentence-level sentiment analysis task of the "Build It, Break It" shared task of the First Workshop on Building Linguistically Generalizable NLP System

    OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers using Piecewise Convolutional Neural Networks

    Full text link
    We describe our system for SemEval-2018 Shared Task on Semantic Relation Extraction and Classification in Scientific Papers where we focus on the Classification task. Our simple piecewise convolution neural encoder performs decently in an end to end manner. A simple inter-task data augmentation signifi- cantly boosts the performance of the model. Our best-performing systems stood 8th out of 20 teams on the classification task on noisy data and 12th out of 28 teams on the classification task on clean data.Comment: To apperar in Proceedings of International Workshop on Semantic Evaluation (SemEval-2018
    • …
    corecore